K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

80% là giá trị đại diện của lớp thứ năm – lớp [70; 90) (của bảng 8), nên có thể xem các số liệu thống kê thuộc vào lớp thứ năm đều bằng 80%. Suy ra: Số các tỉnh, thành phố có “tỉ lệ các trường mần non đạt chuẩn quốc gia trong năm học 2013 – 2014” từ 30% đến 80% là: 14 + 5 + 2 = 21 (tỉnh, thành phố)

Đáp án: D

28 tháng 3 2019

Trong bảng phân bố (tần số hoặc tần suất) ghép lớp, tần suất của lớp thứ i được kí hiệu là f i i và bằng:

f i   =   n i / n   =   n i / n . 100 . 1 / 100   =   n i / n . 100 % .

Trong đó,   n i  là tần số của lớp thứ i, n là số tất cả các số liệu thống kê đã cho.

Trong bài toán đã cho, ta có:

f 3  = 14/63 = 0,(2);

Làm tròn đến hàng phần trăm ta có:  f 3  ≈ 0,22 = 0,22.100% = 22%.

17 tháng 5 2017

Thống kê

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Năm 2010:

Tỉ lệ hộ nghèo trung bình là:

\(\overline {{x_{2010}}}  = \frac{{5,3 + 10,4 + 7,0 + ... + 10,0 + 12,2}}{{10}} = 9,6\)

Phương sai của mẫu số liệu năm 2010 là:

\({s_{2010}}^2 = \frac{1}{{10}}\left[ {{{(5,3 - 9,6)}^2} + {{(10,4 - 9,6)}^2} + ... + {{(12,2 - 9,6)}^2}} \right] = 5,308\)

\( \Rightarrow \) Độ lệch chuẩn là \({s_{2010}} = \sqrt {{s_{2010}}^2}  = \sqrt {5,308}  \approx 2,304\)

Năm 2016:

Tỉ lệ hộ nghèo trung bình là:

\(\overline {{x_{2016}}}  = \frac{{1,3 + 2,9 + 1,6 + ... + 3,0 + 4,3}}{{10}} = 2,82\)

Phương sai của mẫu số liệu năm 2016 là:

\({s_{2016}}^2 = \frac{1}{{10}}\left[ {{{(1,3 - 2,82)}^2} + {{(2,9 - 2,82)}^2} + ... + {{(4,3 - 2,82)}^2}} \right] = 1,0136\)

\( \Rightarrow \) Độ lệch chuẩn là \({s_{2016}} = \sqrt {{s_{2016}}^2}  = \sqrt {1,0136}  \approx 1,007\)

b) Theo số trung bình thì tỉ lệ hộ nghèo các tỉnh/ thành phố thuộc đồng bằng sông Hồng của năm 2016 giảm khoảng 3,4 lần so với năm 2010.

Theo độ lệch chuẩn, độ phân tán của tỉ lệ hộ nghèo các tỉnh/ thành phố thuộc đồng bằng sông Hồng của năm 2016 nhỏ hơn 2010, từ đó cho thấy sự chênh lệch về tỉ lệ hộ nghèo giữa các tỉnh/ thành phố năm 2016 là nhỏ hơn so với năm 2010.

19 tháng 2 2017

a) Bảng 6:

Lớp nhiệt độ (ºC) Tần suất (%) Giá trị đại diện
[15; 17] 16,7 16
[17; 19) 43,3 18
[19; 21) 36,7 20
[21; 23] 3,3 22
Cộng 100 (%)  

Số trung bình cộng của bảng 6 là:

Giải bài tập Toán 10 | Giải Toán lớp 10

Số trung bình cộng của bảng 8 là:

Giải bài tập Toán 10 | Giải Toán lớp 10

b) Nhiệt độ trung bình của thành phố Vinh trong tháng 12 cao hơn nhiệt độ trung bình trong tháng 2 khoảng 0,6ºC.

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
16 tháng 5 2017

a) Đúng

b) Sai

c) Đúng

d) Sai

e) Đúng

19 tháng 12 2017

• Ta có:

- Số trung bình cộng x = 55,82 trường là không có nghĩa.

- Trong các số liệu thống kê đã cho có sự chênh lệch quá lớn (điều này chứng tỏ các số liệu thống kê đã cho là không cùng loại)

Chỉ cần một trong hai điều kể trên là đủ để suy ra rằng: Không chọn được số trung bình cộng làm đại diện cho các số liệu thống kê.

• Dễ thấy: Bảng số liệu thống kê đã cho không có mốt.

• Trong trường hợp đã cho, ta chọn số trung vị M e  = 40 (trường) để làm đại diện cho các số liệu thống kê đã cho (về quy mô và độ lớn).

Đáp án: B

2 tháng 4 2017

a) A = {0, 3, 6, 9, 12, 15, 18}.

b) B = {x ∈ N / x = n(n+1), n ∈ N, 1 ≤ n ≤ 5}.

c) Tự thực hiện

17 tháng 5 2017

a) Dãy các số liệu chiều cao của các học sinh nam ở bảng 5 có :

\(\overline{x_1}\approx163\left(cm\right);s_1^2\approx134,3;s_1\approx11,59\)

Dãy các số liệu chiều cao của các học sinh nữ cho ở bảng 5 có :

\(\overline{x_2}\approx159,5\left(cm\right);s_2^2\approx148;s_2\approx12,17\)

b) Nhóm T có \(\overline{x_3}=163\left(cm\right);s_3^2=169;s_3=13\)

Học sinh ở nhóm nam và nhóm T có chiều cao như nhau và cùng lớn hơn chiều cao của học sinh ở nhóm nữ (vì \(\overline{x}_1=\overline{x}_3>\overline{x}_2\)

\(\overline{x}_1=\overline{x}_3=163\left(cm\right)\)\(s_1< s_3\) nên chiều cao của các học sinh nam đồng đều hơn chiều cao của các học sinh nhóm T