K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

Đáp án D

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

NV
12 tháng 1 2022

Pt hoành độ giao điểm:

\(\sqrt{2x^2-2x-m}-x-1=0\)

\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)

Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)

22 tháng 11 2023

loading...  loading...  loading...  

22 tháng 11 2023

tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá

17 tháng 6 2018

Tại x = –2; –1; 0; 1; 2 thì y = 2

+) Đồ thị của hàm số y = 2 là đường thẳng song song với trục hoành và cắt trục tung tại điểm (0; 2).

Giải bài tập Toán 10 | Giải Toán lớp 10

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?b) Quan sát dạng đồ...
Đọc tiếp

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)

a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?

b) Quan sát dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)  trong Hình 6.10, tìm tọa độ điểm cao nhất của đồ thị.

c) Thực hiện phép biến đổi \(y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\) Hãy cho biết giá trị lớn nhất của diện tích mảnh đất được rào chắn. Từ đó suy ra lời giải của bài toán ở phần mở đầu.

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có đồ thị hàm số \(y =  - 2{x^2}\)

 

Nhìn vào 2 đồ thị, ta thấy dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)giống với dạng đồ thị \(y =  - 2{x^2}\)

b) Tọa độ điểm cao nhất là \(\left( {5;50} \right)\)

c) Ta có: \(S(x) = y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\)

\({(x - 5)^2} \ge 0 \Rightarrow  - 2{(x - 5)^2} + 50 \le 50 \Rightarrow S(x) \le 50\)

Do đó diện tích lớn nhất của mảnh đất rào chắn là 50 \(({m^2})\) khi x = 5.

27 tháng 8 2018

Đáp án C

17 tháng 8 2017

Cách 1. Lập bảng xét dấu.

Cách 2. f(x) không xác định khi x = 2 và 2 ∈ ((-3)/2; +∞) nên A sai. Dễ thấy x = (-7)/4 thì x 2   –   4   < 0; x – 2 < 0; 2x + 3 < 0 ⇒ f(x) < 0, vì vậy C và D sai.

Đáp án: B