\(4\sqrt{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

\(9+4\sqrt{5}=2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2=\left(2+\sqrt{5}\right)^2\)

11 tháng 7 2021

undefined

9 tháng 8 2017

a)

\(3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}^2\right)+2\times\sqrt{2}\times1=\left(\sqrt{2}+1\right)^2\)

mấy câu còn lại tương tự

29 tháng 7 2018

a/ 3 + 2\(\sqrt{2}\) = 2 + 2\(\sqrt{2}\) + 1 = \(\sqrt{2}^2\) + 2\(\sqrt{2}\) + 12 = ( \(\sqrt{2}\) + 1 )2

b/ 3 - \(\sqrt{8}\) = 2 - \(\sqrt{4.2}\) + 1 = 2 - 2\(\sqrt{2}\) + 1 = \(\sqrt{2}^2\) - 2\(\sqrt{2}\) + 12

= ( \(\sqrt{2}\) - 1 )2

c/ 9 + 4\(\sqrt{5}\) = 4 + 2.2\(\sqrt{5}\) + 5 = 22 + 2.2\(\sqrt{5}\) + \(\sqrt{5}\)2

= ( 2 + \(\sqrt{5}\) )2

d/ 23 - 8\(\sqrt{7}\) = 16 - 2.4.\(\sqrt{7}\) + 7 = 42 - 2.4.\(\sqrt{7}\) + \(\sqrt{7}^2\)

= ( 4 - \(\sqrt{7}\) )2

15 tháng 6 2018

Ta chỉ cần đưa \(4\sqrt{3}=2.\sqrt{a}.\sqrt{b}\) sao cho a+b=7 hoặc a+b=13
a) \(7+4\sqrt{3}=7+2\sqrt{4}.\sqrt{3}=\left(\sqrt{4}\right)^2+2\sqrt{4}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{4}+\sqrt{3}\right)^2\)
b) \(13-4\sqrt{3}=\left(\sqrt{12}\right)^2-2.\sqrt{12}.1+1^2=\left(\sqrt{12}-1\right)^2\)

15 tháng 6 2018

Cái này mk hk rồi nè

\(7+4\sqrt{3}=4+2.2.\sqrt{3}+3=\left(\sqrt{3}+2\right)^2\)

\(13-4\sqrt{3}=12-2.2.\sqrt{3}+1=12-2.\sqrt{12}+1=\left(\sqrt{12}-1\right)^2\)

k mk nha

2 tháng 9 2017

\(13-4\sqrt{3}=\left(2\sqrt{3}\right)^2-2.2\sqrt{2}.1+1^2=\left(2\sqrt{3}-1\right)^2\)

a) \(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

câu này \(\sqrt{15}\)đúng hơn \(\sqrt{5}\)

b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}=-2\sqrt{2}\)

29 tháng 7 2018

\(a,\) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(b,\) \(\sqrt{15-6\sqrt{6}}\\ =\sqrt{\left(3-\sqrt{6}\right)^2}\\ =3-\sqrt{6}\)

b: \(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)

c: \(13+\sqrt{48}=13+4\sqrt{3}=\left(2\sqrt{3}+1\right)^2\)

d: \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)

\(12-2\sqrt{35}\)

\(=\left(\sqrt{5}\right)^2+\left(\sqrt{7}\right)^2-2\sqrt{35}\)

\(=\left(\sqrt{5}+\sqrt{7}\right)^2\)

\(7+\sqrt{40}\)

\(=\left(\sqrt{5}\right)^2+\left(\sqrt{2}\right)^2+2\sqrt{10}\)

\(=\left(\sqrt{5}+\sqrt{2}\right)^2\)

18 tháng 7 2017

a) \(12-2\sqrt{35}=\left(\sqrt{5}\right)^2-2\sqrt{5.7}+\left(\sqrt{7}\right)^2=\left(\sqrt{5}-\sqrt{7}\right)^2\)

b) \(7+\sqrt{40}=7+\sqrt{4.10}=7+2\sqrt{10}=\left(\sqrt{5}\right)^2+2\sqrt{5.2}+\left(\sqrt{2}\right)^2=\left(\sqrt{5}+\sqrt{2}\right)^2\) 

3 tháng 9 2016

1) \(15-\sqrt{216}=15-\sqrt{4}.\sqrt{54}\)=\(9-2.\sqrt{9}.\sqrt{6}+6\)=\(\left(\sqrt{9}-\sqrt{6}\right)^2=\left(3-\sqrt{6}\right)^2\)

2)\(20-\sqrt{76}=20-\sqrt{4}.\sqrt{19}=19-2\sqrt{19}.1+1=\left(\sqrt{19}-1\right)^2\)

3)\(24-12\sqrt{3}=6\left(4-2\sqrt{3}\right)=6\left(3-2.\sqrt{3}.1+1\right)=6\left(\sqrt{3}-1\right)^2\)

4)\(7-\sqrt{13}=\frac{14-2\sqrt{13}}{2}=\frac{13-2\sqrt{13}.1+1}{2}=\frac{\left(\sqrt{13}-1\right)^2}{2}\)

5)\(16-\sqrt{31}=\frac{32-2\sqrt{31}}{2}=\frac{31-2\sqrt{31}.1+1}{2}=\frac{\left(\sqrt{31}-1\right)^2}{2}\)