Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để D có giá trị âm thì 2/5.x > x2 => 2/5.x > x.x
=> x < 2/5
b) Để E có giá trị âm thì x - 2 hoặc x - 6 phải có giá trị âm. Mà x - 6 < x - 2 => x - 6 âm và x - 2 dương => x - 6 < 0 và x - 2 > 0
=> 2 < x < 6
c) Để F nhận giá trị âm thì x2 - 1 phải âm (do x2 luôn lơn hơn hoặc bằng 0)
=> x2 - 1 < 0 => x2 < 1
Mà nếu x = 0 thì x2 = 0 => loại vì mẫu không thể = 0
=> 0 < x < 1
| | x + 5 | - 4 | = 3
<=> x + 5 = 3 + 4
<=> x + 5 = 7
<=> x = 7 - 5
<=> x = 2
Chúc bạn học tốt!!!
\(A=|2x+1|+|x-1|-|x-2|\)
Khi \(x< \frac{-1}{2}\) thì \(|2x+1|=-1-2x;|x-1|=1-x;|x-2|=2-x\)
\(\Rightarrow A=-2x-1+1-x+x-2\)
\(A=-2x-2\)
Khi \(\frac{-1}{2}\le x\le1\) thì \(|2x+1|=2x+1;|x-1|=1-x;|x-2|=2-x\)
\(\Rightarrow A=2x+1+1-x+x-2\)
\(A=2x\)
Khi \(1< x< 2\) thì \(|2x+1|=2x+1;|x-1|=x-1;|x-2|=2-x\)
\(\Rightarrow A=2x+1+x-1+x-2\)
\(A=4x-2\)
Khi \(x\ge2\) thì \(|2x+1|=2x+1;|x-1|=x-1;|x-2|=x-2\)
\(\Rightarrow A=2x+1+x-1+2-x\)
\(A=2x+2\)
Để A có giá trị nguyên
thì 3\(⋮\)(x-1)
mà xeZ nên x-1eZ
x-1e{3;-3}
xe{4;-2}
a)Để A là số nguyên thì x-2 chia hết cho x+1
Do đó ta có:
\(A=\frac{x-2}{x+1}=\frac{x+1+-3}{x+1}=1+\frac{-3}{x+1}\)
\(\Rightarrow x+1\inƯ\left(-3\right)\)
Vậy Ư(-3)là:[1,-1,3,-3]
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy x=-4;-2;0;2
b)Để B là số nguyên thì x+4 chia hết cho x-1
Do đó ta có:
\(A=\frac{x+4}{x-1}=\frac{x-1+5}{x-1}=1+\frac{5}{x-1}\)
\(\Rightarrow x-1\inƯ\left(5\right)\)
Vậy Ư(5)là:[1,-1,5,-5]
Ta có bảng sau:
x-1 | -5 | -1 | 1 | 5 |
x | -4 | 0 | 2 | 6 |
Vậy x=-4;0;2;6
c) Để \(\frac{2x+7}{x+2}\) là số nguyên
\(\Leftrightarrow2x+7⋮x+2\)
\(\Rightarrow\left(2x+4\right)+3⋮x+2\)
\(\Rightarrow2\left(x+2\right)+3⋮x+2\)
\(\Rightarrow\begin{cases}2\left(x+2\right)⋮x+2\\3⋮x+2\end{cases}\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng sau :
x+2 | -3 | -1 | 1 | 3 |
x | -5 | -3 | -1 | 1 |
Vậy \(x\in\left\{-3;-1;1;3\right\}\)
d) Để \(\frac{2x+9}{x+1}\) là số nguyên
\(\Leftrightarrow2x+9⋮x+1\)
\(\Rightarrow\left(2x+2\right)+7⋮x+1\)
\(\Rightarrow2\left(x+1\right)+7⋮x+1\)
\(\Rightarrow\begin{cases}2\left(x+1\right)⋮x+1\\7⋮x+1\end{cases}\)
\(\Rightarrow x+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng sau :
x+1 | -7 | -1 | 1 | 7 |
x | -8 | -2 | 0 | 6 |
Vậy \(x\in\left\{-8;-2;0;6\right\}\)
a) Vì \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(x-3=0\)
\(\Rightarrow x=3\)
Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018
b)Vì \(\left|x-5\right|\ge0\)
\(\Rightarrow\left|x-5\right|+2016\ge2016\)
Dấu "=" xảy ra khi \(x-5=0\)
\(\Rightarrow x=5\)
Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016
c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất
\(\Rightarrow x-3< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-3\le-1\)
Dấu "=" xảy ra khi \(x=-1+3=2\)
Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)
d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)
D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất
\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất
\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN
\(\Rightarrow x-5< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-5\le-1\)
Dấu "=" xảy ra khi \(x=-1+5=4\)
Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)
~Học tốt^^~
Phần kết luận: Vậy với x=...... thì "biểu thức"...
em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý
b)\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
=> n-5 thuộc Ư(7)
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
a) \(D=x+\left|x\right|\)
b) \(E=\left|x-7\right|+6-x\)
c) \(C=x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\)