K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

\(D^2=6\Rightarrow \left[\begin{matrix} D=\sqrt{6}\\ D=-\sqrt{6}\end{matrix}\right.\)

Mà $D< 0$ thì đương nhiên $D=-\sqrt{6}$ rồi em.

14 tháng 8 2021

Em cảm ơn chị rất nhiều! 

NV
1 tháng 8 2021

\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)

\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)

\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)

\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)

7 tháng 9 2023

\(a,\dfrac{7}{\sqrt{12}}=\dfrac{7\sqrt{3}}{\sqrt{12}\cdot\sqrt{3}}\)

\(=\dfrac{7\sqrt{3}}{\sqrt{36}}=\dfrac{7\sqrt{3}}{6}\)

\(b,\dfrac{3}{2\sqrt{3}}=\dfrac{3\sqrt{3}}{2\sqrt{3}\cdot\sqrt{3}}\)

\(=\dfrac{3\sqrt{3}}{2\cdot3}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)

\(c,\dfrac{1}{5\sqrt{12}}=\dfrac{\sqrt{3}}{5\cdot2\sqrt{3}\cdot\sqrt{3}}\)

\(=\dfrac{\sqrt{3}}{10\cdot3}=\dfrac{\sqrt{3}}{30}\)

\(d,\dfrac{2\sqrt{3}+3}{4\sqrt{3}}=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{4\sqrt{3}}\)

\(=\dfrac{2+\sqrt{3}}{4}\)

7 tháng 9 2023

a) \(\dfrac{7}{\sqrt[]{12}}=\dfrac{7}{2\sqrt[]{3}}=\dfrac{7\sqrt[]{3}}{2\sqrt[]{3}.\sqrt[]{3}}=\dfrac{7\sqrt[]{3}}{6}\)

b) \(\dfrac{3}{2\sqrt[]{3}}=\dfrac{\sqrt[]{3}.\sqrt[]{3}}{2\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{2}\)

c) \(\dfrac{1}{5\sqrt[]{12}}=\dfrac{1}{10\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{10\sqrt[]{3}.\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{30}\)

d) \(\dfrac{2\sqrt[]{3}+3}{4\sqrt[]{3}}=\dfrac{\sqrt[]{3}\left(2\sqrt[]{3}+3\right)}{4\sqrt[]{3}.\sqrt[]{3}}=\dfrac{3\left(2+\sqrt[]{3}\right)}{12}=\dfrac{2+\sqrt[]{3}}{4}\)

12 tháng 10 2023

a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)

\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)

b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}+3-\sqrt{2}=6\)

c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

12 tháng 10 2023

a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)

b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}+3-\sqrt{2}=6\)

c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

31 tháng 10 2021

a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)

b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)

c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)

d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)

13 tháng 4 2021

a

căn có nghĩa 

\(\Leftrightarrow\frac{a}{3}\ge0\)   

\(\Leftrightarrow a\ge0\)   

b

căn có nghĩa 

\(\Leftrightarrow-5a\ge0\)   

\(\Leftrightarrow b\le0\left(-5\le0\right)\)   

c

căn có nghĩa 

\(\Leftrightarrow4-a\ge0\)   

\(\Leftrightarrow-a\ge0-4\)   

\(\Leftrightarrow-a\ge-4\)   

\(\Leftrightarrow a\le4\)   

d

căn có nghĩa

\(\Leftrightarrow3a+7\ge0\)   

\(\Leftrightarrow a\ge-\frac{7}{3}\)

20 tháng 5 2021

a>0

9 tháng 10 2021

\(1,\\ a,=\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}=3+\sqrt{7}-\sqrt{7}+1=4\\ b,K=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\ c,=\sqrt{\left(6-2\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-4\right)^2}=6-2\sqrt{6}+2\sqrt{6}-4=2\\ e,=\sqrt{\left(2-\sqrt{2}\right)^2}-\left(\sqrt{6}-\sqrt{2}\right)=2-\sqrt{2}-\sqrt{6}+\sqrt{2}=2-\sqrt{6}\)

\(2,\\ a,A=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{x+9}\\ A=\dfrac{x+9}{\left(\sqrt{x}-3\right)\left(x+9\right)}=\dfrac{1}{\sqrt{x}-3}\\ b,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}+1\\ \Leftrightarrow A=\dfrac{1}{\sqrt{3}+1-3}=\dfrac{1}{\sqrt{3}+2}=2-\sqrt{3}\)

9 tháng 10 2021

cảm ơn bạn