Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2+1\)
\(\Leftrightarrow ax^3+\left(b-a\right)x^2+\left(-b-a\right)x-b=ax^3+cx^2+0.x+1\)
sử dụng đồng nhất thức ta được: \(\hept{\begin{cases}b-a=c\\-b-a=0\\-b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\\c=-2\end{cases}}\)
Đặt phép chia sau đo tính số dư
Vì x4+1 chia hết cho x2+ax +b ∀ x
⇒ số dư = 0 ⇒ từng cái = 0 ⇒ a= ; b =
a: f(x) chiahết cho g(x)
=>\(x^4-x^2-3x^3+3x+\left(b+1\right)x^2-\left(b+1\right)+\left(a-3\right)x+2b+1⋮x^2-1\)
=>a-3=0 và 2b+1=0
=>a=3 và b=-1/2
b: A=2x^2-3x
=2(x^2-3/2x)
=2(x^2-2*x*3/4+9/16-9/16)
=2(x-3/4)^2-9/8>=-9/8
Dấu = xảy ra khi x=3/4
Ta có:
Áp dụng phương pháp hệ số bất định ta có:
Vậy giá trị a, b, c cần tìm là a= 1, b= -1, c= 0.
Ta có T = ( a x + 4 ) ( x 2 + b x – 1 )
= a x . x 2 + a x . b x + a x . ( - 1 ) + 4 . x 2 + 4 . b x + 4 . ( - 1 ) = a x 3 + a b x 2 – a x + 4 x 2 + 4 b x – 4 = a x 3 + ( a b x 2 + 4 x 2 ) + ( 4 b x – a x ) – 4 = a x 3 + ( a b + 4 ) x 2 + ( 4 b – a ) x – 4
Theo bài ra ta có
( a x + 4 ) ( x 2 + b x – 1 ) = 9 x 3 + 58 x 2 + 15 x + c đúng với mọi x
ó a x 3 + ( a b + 4 ) x 2 + ( 4 b – a ) x – 4 = 9 x 3 + 58 x 2 + 15 x + c đúng với mọi x.
ó a = 9 a b + 4 = 58 4 b - a = 15 - 4 = c ó a = 9 9 . b = 54 4 b - a = 15 c = - 4 ó a = 9 b = 6 c = - 4
Vậy a = 9, b = 6, c = -4
Đáp án cần chọn là: B