K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)

Ta có: \(a^2\) = \(\left(5k+4\right)^2\)

      = 25\(k^2\) + 40k + 16

      = 25\(k^2\) + 40k + 15 + 1

      = 5(5\(k^2\)+ 8k +3) +1

Ta có: 5 ⋮ 5 nên 5(5\(k^2\) + 8k + 3) ⋮ 5

Vậy \(a^2\) = (5k+4)25k+42 chia cho 5 dư 1. (đpcm)

15 tháng 9 2021

cảm ơn cậu nha

28 tháng 7 2021

220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )

119 ≡  −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )

69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )

119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )

69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )

Suy ra A ⋮ 17 (2)

Lại có A là số chẵn (Vì \(69^{220^{119}}\)\(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)

Suy ra: A ⋮ 2 (3)

Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102

29 tháng 7 2021

thank youyeu

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

Bổ sung điều kiện $n$ là số tự nhiên khác $0$

Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)

\(4^{3^{4n+1}}\equiv 0\pmod 4\)

\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)

Vậy $A\vdots 4(*)$

Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$ 

$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$

$3^{4n+1}=3.81^n\equiv 3\pmod {10}$

$\Rightarrow 3^{4n+1}=10t+3$

$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$

Do đó:

$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$

Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$

Ta có đpcm.

 

Bạn có thể gõ lại công thức rõ hơn được không?

10 tháng 5 2021

Tỉ số đồng dạng là 3 nha

Chúc bạn học tốt!!!

11 tháng 5 2021

mình cảm ơn