K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

\(\widehat{FAH}\) chung

DO đó: ΔAFH~ΔADB

b: ΔAFH~ΔADB

=>\(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)

=>\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)

Xét ΔAFD và ΔAHB có

\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)

\(\widehat{FAD}\) chung

Do đó: ΔAFD~ΔAHB

c: ΔAFD~ΔAHB

=>\(\widehat{ADF}=\widehat{ABH}\)

=>\(\widehat{ADF}=\widehat{ACH}\)

Xét ΔAEH vuông tại E và ΔADC vuông tại D có

\(\widehat{EAH}\) chung

DO đó: ΔAEH~ΔADC

=>\(\dfrac{AE}{AD}=\dfrac{AH}{AC}\)

=>\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)

Xét ΔAED và ΔAHC có

\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)

\(\widehat{EAD}\) chung

Do đó: ΔAED~ΔAHC

=>\(\widehat{ADE}=\widehat{ACH}\)

=>\(\widehat{FDA}=\widehat{EDA}\)

=>DA là phân giác của góc FDE

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

26 tháng 4 2019

A B C D H

a) Sử dụng định lí Pita go tính đc BC=10 cm

Vì AD là phân giác góc A , D thuộc Bc nên ta có:

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{8}{6}=\frac{4}{3}\Rightarrow\hept{\begin{cases}BD=\frac{4}{7}.BC=\frac{40}{7}\\CD=\frac{3}{7}.BC=\frac{30}{7}\end{cases}}\) (cm)

b) Xét tam giác AHB và tam giác CHA

có: \(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ góc ACB)

=> tam giác ABH đồng dạng tam giác CHA

c) \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.6}{10}=\frac{24}{5}\)(cm)

Xét tam giác AHB vuông và tam giác AHC vuông

Sử dụng định lí pitago để tính \(BH=\frac{32}{5};CH=\frac{18}{5}\)(cm)

\(S_{\Delta AHB}=\frac{1}{2}.AH.BH=\frac{1}{2}.\frac{24}{5}.\frac{32}{5}=\frac{384}{25}\left(cm^2\right)\)

\(S_{\Delta AHC}=\frac{1}{2}.AH.CH=\frac{1}{2}.\frac{24}{5}.\frac{18}{5}=\frac{216}{25}\left(cm^2\right)\)

14 tháng 4 2018

a)  Xét  \(\Delta AFH\)và    \(\Delta ADB\)có:

        \(\widehat{AFH}=\widehat{ADB}=90^0\)

       \(\widehat{BAD}\) chung

suy ra:  \(\Delta AFH~\Delta ADB\)(g.g)

b)    Xét   \(\Delta AFC\)và     \(\Delta AEB\)có:

            \(\widehat{AFC}=\widehat{AEB}=90^0\)

           \(\widehat{BAC}\)   chung

suy ra:   \(\Delta AFC~\Delta AEB\)

c)   \(\Delta AFC~\Delta AEB\)

\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)

\(\Rightarrow\)\(AF.AB=AE.AC\)

d) \(\frac{AF}{AE}=\frac{AC}{AB}\)(cmt)    \(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

 Xét   \(\Delta AEF\) và    \(\Delta ABC\)có:

        \(\widehat{BAC}\)  chung

      \(\frac{AE}{AB}=\frac{AF}{AC}\)  (cmt)

suy ra:    \(\Delta AEF~\Delta ABC\)

14 tháng 4 2018

Còn cau (e), (f) đâu bạn