Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=x^3 + 3x^2*5 + 3x*5^2 + 5^3
=(x+5)^3
Thay x = -10 vào biểu thức A ta được:
A = (-10+5)^3
=(-5)^3
=-75
Làm tương tự nhé
Ta có : \(2x^2+2y^2-2xy+2x+2y+2=0\)
=>\(x^2-2xy+y^2+x^2+2x+1+y^2+2y+1=0\)
=>\(\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)
=>\(\left\{\begin{matrix}x-y=0< =>x=y\\x+1=0=>x=-1\\y+1=0=>y=-1\end{matrix}\right.\)
Thế x=-1;y=-1 vào biểu thức , ta có :
\(\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1+0=1\)
\(2x^2+2y^2-2xy+2x+2y+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left[\begin{matrix}\left(x-y\right)^2=0\Leftrightarrow x=y\\\left(x+1\right)^2=0\Leftrightarrow x=-1\\\left(y+1\right)^2=0\Leftrightarrow y=-1\end{matrix}\right.\)
\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)
\(A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}\)
\(A=1+0=1\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
caau1: (2x +3)2 = 4x2 + 12x + 9
hệ số .....là 12
caau2. hệ số ....là -36
câu 3. 2x - 5 = 0
x = 5/2 = 2,5
mk thi lâu rồi 300đ
Lời giải:
$16x^3y^2-24x^2y^3+20x^4=16x^2(xy^2-\frac{3}{2}y^3+\frac{5}{4}x^2)$
$\Rightarrow 16x^3y^2-24x^2y^3+20x^4\vdots 16x^2$
Đáp án C.
Điều kiện: \(\hept{\begin{cases}3\left(x+y\right)\ne0\\x^2-2xy+y^2\ne0\\6\left(x+y\right)\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x+y\ne0\\\left(x-y\right)^2\ne0\\x+y\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-y\\x\ne y\end{cases}}}\)
\(\frac{2x^3-2y^3}{3x+3y}:\frac{x^2-2xy+y^2}{6x+6y}\)
\(=\frac{2\left(x^3-y^3\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)
\(=\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)
\(=\frac{4\left(x^2+xy+y^2\right)}{x-y}\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a) \(A=x-x^2=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy Max A = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
b) \(B=2x-2x^2=2\left(x-x^2\right)=-2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\le\frac{1}{2}\)
Vậy Max B = \(\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)