K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

\(\left(7x-4\right)\left(2x+3\right)-13x\)

\(=14x^2+21x-8x-12-13x\)

\(=14x^2-12\)

\(a^3-\left(a^2-3a\right)\left(a+3\right)\)

\(=a^3-\left(a^3+3a^2-3a^2-9a\right)\)

\(=a^3-a^3-3a^2+3a^2+9a\)

\(=9a\)

\(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)

\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)

\(=\)\(2a^2-b^2\)

\(5b\left(2x-b\right)+\left(x-6a\right)\left(5a+2x\right)\)

\(=10bx-5b^2+5ax+2x^2-30a^2-12ax\)

\(=2x^2-30a^2-5b^2+10bx-7ax\)

3 tháng 7 2019

a)  (2a - b)(b + 4a) + 2a(b - 3a)
= 2a(b + 4a) - b(b + 4a) + 2ab - 6a^2
= 2ab + 8a^2 - b^2 - 4ab + 2ab - 6a^2
= (8a^2 - 6a^2) + (2ab + 2ab - 4ab) - b^2
= 2a^2 - b^2
b) .(3a - 2b)(2a - 3b) - 6a(a - b)
= 3a(2a - 3b) - 2b(2a - 3b) - (6a^2 - 6ab)
= 6a^2 - 9ab - (4ab - 6b^2) - (6a^2 - 6ab)
= 6a^2 - 9ab - 4ab + 6b^2 - 6a^2 + 6ab
= 6b^2 + (6a^2 - 6a^2) + (6ab - 4ab - 9ab)
= 6b^2 - 7ab

c. 5b(2x - b) - (8b - x)(2x - b)
= 10bx - 5b^2 - 8b(2x - b) + x(2x - b)
= 10bx - 5b^2 - 16bx + 8b^2 + 2x^2 - bx
= (10bx - 16bx - bx) + 2x^2 + (8b^2 - 5b^2)
= -7bx + 2x^2 + 3b^2
d. 2x(a + 15x) + (x - 6a)(5a + 2x)
= 2ax + 30x^2 + x(5a + 2x) - 6a(5a + 2x)
= 2ax + 30x^2 + 5ax + 2x^2 - 30a^2 - 12ax
= (30x^2 + 2x^2) + (2ax + 5ax - 12ax) - 30a^2
= 32x^2 - 5ax - 30a^2

Chúc bạn hok tốt !!!

4 tháng 9 2019

1) (a+2b+1)2

=a2+2a(2b+1)+(2b+1)2

=a2+4ab+2a+(2b)2+2.2b.1+12

=a2+4ab+2a+4b2+4b+1

2) (2a-b+3)2

=(2a)2 -2.2a(b-3)+(b-3)2

=4a2-4a(b-3)+b2-2b.3+32

=4a2-4ab+12a+b2 -6b+9

3) (2a-3b+1)2

=(2a)2-2.2a(3b-1)+(3b-1)2

=4a2-4a(3b-1)+(3b)2-2.3b.1+12

=4a2-4ab+4a+9b2-6b+1

26 tháng 6 2023

a) \(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)

\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)

\(=\left(2ab+2ab-4ab\right)+\left(8a^2-6a^2\right)-b^2\)

\(=2a^2-b^2\)

b) \(\left(3a-2b\right).\left(2a-3b\right)-6a\left(a-b\right)\)

\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)

\(=\left(6a^2-6a^2\right)-\left(9ab+4ab-6ab\right)+6b^2\)

\(=-7ab+b^2\)

c) \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)

\(=10bx-5b^2-\left(16bx-8b^2-2x^2+bx\right)\)

\(=10bx-5b^2-16bx+8b^2+2x^2-bx\)

\(=\left(10bx-16bx-bx\right)-\left(5b^2-8b^2\right)+2x^2\)

\(=-7bx+3b^2+2x^2\)

d) \(2x\left(a+15x\right)+\left(x-6a\right)\left(5a+2x\right)\)

\(=2ax+30x^2+5ax+2x^2-30a^2-12ax\)

\(=\left(2ax+5ax-12ax\right)+\left(30x^2+2x^2\right)-30a^2\)

\(=-5ax+32x^2-30a^2\)

a: =2ab+8a^2-b^2-4ab+2ab-6a^2

=2a^2-b^2

b: =6a^2-9ab-4ab+6b^2-6a^2+6ab

=-7ab+6b^2

c: =10bx-5b^2-16bx+8b^2+2x^2-xb

=3b^2+2x^2-7xb

d: =2xa+30x^2+5ax+2x^2-30a^2-12ax

=32x^2-30a^2-5ax

30 tháng 7 2018

e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)

= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)

= \(\dfrac{2x-6}{2x\left(x+3\right)}\)

= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)

30 tháng 7 2018

c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)

= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)

= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)

1: \(=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

2: \(=a\left(a^2+3a+2\right)=a\left(a+1\right)\left(a+2\right)\)

3: \(=\left(a^2+a-1+1\right)\left(a^2+a-1-1\right)\)

\(=\left(a^2+a\right)\left(a^2+a-2\right)\)

\(=a\left(a+1\right)\left(a+2\right)\left(a-1\right)\)

16 tháng 6 2017

Bài 1:

\(a,\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(x^2-xy+1\right)=\left(x^3y^2+\dfrac{1}{2}x^2y^3\right)\left(x^2-xy+1\right)=x^5y^2-x^4y^3+x^3y^2+\dfrac{1}{2}x^3y^3-\dfrac{1}{2}x^3y^4+\dfrac{1}{2}x^2y^3\)

\(b,\left(\dfrac{1}{2}x-1\right)\left(2x-3\right)=x^2-\dfrac{3}{2}x-2x+3=x^2-\dfrac{7}{2}x+3\)\(c,\left(x-7\right)\left(x-5\right)=x^2-5x-7x+35=x^2-12x+35\)\(f,\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x-1\right)=\left(x^2-\dfrac{1}{4}\right)\left(4x-1\right)=4x^3-x^2-x+\dfrac{1}{4}\)Bài 2 ,

\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\Rightarrowđpcm\)\(b,\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+y^3x+x^3y-x^2y^2-xy^3-y^4=x^4-y^4\)

24 tháng 6 2017

a)\(\left(x-2\right)\left(x+3\right)-\left(2x-1\right)^2\)

\(=x^2+x-6-\left(4x^2-4x+1\right)\)

\(=x^2+x-6-4x^2+4x-1\)

\(=5x-3x^2-7\)

b)\(\left(2a+3\right)^2-a\left(5a-2\right)\)

\(=4a^2+12a+9-5a^2+2a\)

\(=14a-a^2+9\)

c)\(3a\left(a-1\right)\left(a+2\right)-\left(3a+1\right)\left(1-3a\right)\)

\(=\left(3a^2-3a\right)\left(a+2\right)+9a^2-1\)

\(=3a^3+3a^2-6a+9a^2-1\)

\(=3a^3+12a^2-6a-1\)