\(\sqrt{139-24\sqrt{5}}\)

b/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\sqrt{7}+1\)

b: \(=\sqrt{5}+\sqrt{2}\)

c: \(=\sqrt{5}-\sqrt{3}\)

d: \(=2\sqrt{3}-\sqrt{7}\)

17 tháng 6 2016

a) \(-\sqrt[3]{81x^{10}y^5}=-\sqrt[3]{27\cdot x^9\cdot y^3\cdot3xy^2}=-3x^3y\cdot\sqrt[3]{3xy^2}.\)

b) \(\frac{\sqrt{80x^3}}{\sqrt{2x}}=\sqrt{\frac{80x^3}{2x}}=\sqrt{40x^2}=2\sqrt{10}x\)

20 tháng 10 2017

a/ \(\sqrt{10}< \sqrt{16}=4\)

b/ \(\sqrt{40}>\sqrt{36}=4\)

c/ \(\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}=4+5=9\)

d/ \(3\sqrt{2}=\sqrt{18}< \sqrt{20}=2\sqrt{5}\)

20 tháng 10 2017


a) \(\sqrt{10}\)và 4
4 = \(\sqrt{16}\)
Do \(\sqrt{16}>\sqrt{10}\)nên \(4>\sqrt{10}\)
b) \(\sqrt{40}\)và 6
6 = \(\sqrt{36}\)
Do \(\sqrt{40}>\sqrt{36}\)nên\(\sqrt{40}>6\)
 

19 tháng 3 2017

\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)

\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)

\(A^{2n}\ge0\forall A\)

\(-A^{2n}\le0\forall A\)

19 tháng 3 2017

\(\left|A\right|\ge0\forall A\)

\(-\left|A\right|\le0\forall A\)

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)

20 tháng 10 2017

a) Ta có: 4 = \(\sqrt{16}\)

Vì 16 > 10 nên \(\sqrt{16}\) > \(\sqrt{10}\). \(\Rightarrow\) 4 > \(\sqrt{10}\)

Vậy, 4 > \(\sqrt{10}\)

20 tháng 10 2017

a.) \(4=\sqrt{16}\)\(10< 16\Rightarrow\sqrt{10}< \sqrt{16}\Rightarrow\sqrt{10}< 4\)

b) \(6=\sqrt{36}\)\(40>36\Rightarrow\sqrt{40}>\sqrt{36}\Rightarrow\sqrt{40}>6\)

c.) Ta có: 9 = 4 + 5 = \(\sqrt{16}+\sqrt{25}\)

\(\sqrt{15}< \sqrt{16};\sqrt{24}< \sqrt{25}\)

\(\Rightarrow\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}\)

\(\Rightarrow\sqrt{15}+\sqrt{24}< 4+5\)

\(\Rightarrow\sqrt{15}+\sqrt{24}< 9\)

d.) \(3\sqrt{2}=\sqrt{18}\)

\(2\sqrt{5}=\sqrt{20}\)

mà 18 < 20

\(\Rightarrow\sqrt{18}< \sqrt{20}\)

\(\Rightarrow3\sqrt{2}< 2\sqrt{5}\)

20 tháng 8 2017

1)

a) \(\sqrt{x+2}=\dfrac{5}{7}\)

-> x+2 = \(\left(\dfrac{5}{7}\right)^{^2}\)=\(\dfrac{25}{49}\)

-> x = \(\dfrac{25}{49}-2=-\dfrac{73}{49}\)

b) \(\sqrt{x+2}-8=1\)

-> \(\sqrt{x+2}=1+8=9\)

-> \(x+2=9^2=81\)

-> x = 81 -2 = 79

c) 4 - \(\sqrt{x-0,2}=0,5\)

-> \(\sqrt{x-0,2}=4-0,5=3,5\)

-> x - 0,2 = (3,5)2 = 12,25

-> x = 12,25 +0,2 = 12,45

2) a)

Với mọi x thì: \(\sqrt{x+24}\ge0\)

=> \(\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\)

Dấu "=" xảy ra khi : x + 24 = 0 <=> x = -24

Vậy MinA = \(\dfrac{4}{7}\) khi x = -24

21 tháng 8 2017

Cảm ơn nhìu vui