Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(2\cdot sin\left(180-a\right)\cdot cota-cos\left(180-a\right)\cdot tana+cot\left(180-a\right)\)
\(=2\cdot sina\cdot cota+cosa\cdot tana+\dfrac{cos\left(180-a\right)}{sin\left(180-a\right)}\)
\(=2\cdot sina\cdot\dfrac{cosa}{sina}+cosa\cdot\dfrac{sina}{cosa}+\dfrac{-cosa}{sina}\)
\(=2cosa+sina-tana\)
Ta có:
\(\sin100^o+\sin80^o+\cos16^o+\cos164^o\)
\(=\sin\left(180^o-80^o\right)+\sin80^o+\cos16^o+\cos\left(180^o-16^o\right)\)
\(=\sin80^o+\sin80^o+\cos16^o-\cos16^o\)
\(=2\sin80^o\)
a) Ta có: \(\left\{ \begin{array}{l}\sin {100^o} = \sin \left( {{{180}^o} - {{80}^o}} \right) = \sin {80^o}\\\cos {164^o} = \cos \left( {{{180}^o} - {{16}^o}} \right) = - \cos {16^o}\end{array} \right.\)
\( \Rightarrow \sin {100^o} + \sin {80^o} + \cos {16^o} + \cos {164^o}\)\( = \sin {80^o} + \sin {80^o} + \cos {16^o}-\cos {16^o}\)\( = 2\sin {80^o}.\)
b)
Ta có:
\(\left\{ \begin{array}{l}\sin \left( {{{180}^o} - \alpha } \right) = \sin \alpha \\\cos \left( {{{180}^o} - \alpha } \right) = - \cos \alpha \\\tan \left( {{{180}^o} - \alpha } \right) = - \tan \alpha \\\cot \left( {{{180}^o} - \alpha } \right) = - \cot \alpha \end{array} \right.\quad ({0^o} < \alpha < {90^o})\)\( \Rightarrow 2\sin \left( {{{180}^o} - \alpha } \right).\cot \alpha - \cos \left( {{{180}^o} - \alpha } \right).\tan \alpha .\cot \left( {{{180}^o} - \alpha } \right)\) \( = 2\sin \alpha .\cot \alpha - \left( { - \cos \alpha } \right).\tan \alpha .\left( { - \cot \alpha } \right)\)\( = 2\sin \alpha .\cot \alpha - \cos \alpha .\tan \alpha .\cot \alpha \)
\( = 2\sin \alpha .\frac{{\cos \alpha }}{{\sin \alpha }} - \cos \alpha .\left( {\tan \alpha .\cot \alpha } \right)\)\( = 2\cos \alpha - \cos \alpha .1 = \cos \alpha .\)
1234567890-01234567890-=qưertyuiop[]\';;lkjhfgdsazxcvbnm,./\'l;[]7894561230.+-
a)
\(\begin{array}{l}\cos {80^o}43'51'' = 0,161;\\\tan {147^o}12'25'' = - 0,644;\\\cot {99^o}9'19'' = - 0,161\end{array}\)
b) \(\alpha = {136^o}18'9,81''.\)
b) \(\sin x+\cos x=\dfrac{3}{2}\)
\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)
\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)
\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)
sin 100= sin 80
cos 16=có164
A=2sin 80+2cos16
B=2sin a*cot a-cos a*tan a*cot a
B=2sin a*cosa/sin a-cos a
B=2cos a-cos a=cos a