K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2020

 Gọi số khẩu trang công ti dự định may mỗi ngày là \(x\)(khẩu trang , \(x\in N^∗,x>0\))

       số khẩu trang công ti thực tế may mỗi ngày là \(x+100\)(khảu trang)

Thời gian công ti dự dịnh hoàn thành công việc là \(\frac{6000}{x}\)(ngày)

Thời gian công ti thực tế hoàn thành công việc là \(\frac{6000}{x+100}\)(ngày)

Vì thời gian thực tế hoàn thành sớm hơn 2 ngày so với dự định, ta có phương trình:

\(\frac{6000}{x}-\frac{6000}{x+100}=2\)

\(\Leftrightarrow\frac{6000.\left(x+100\right)}{x.\left(x+100\right)}-\frac{6000x}{x.\left(x+100\right)}=\frac{2x.\left(x+100\right)}{x.\left(x+100\right)}\)

\(\Leftrightarrow6000x+600000-6000x=2x^2+200x\)

\(\Leftrightarrow2x^2+200x-600000=0\)

\(\Leftrightarrow x^2+100x-300000=0\)

\(\Leftrightarrow x^2-500x+600x-300000=0\)

\(\Leftrightarrow x.\left(x-500\right)+600.\left(x-500\right)=0\)

\(\Leftrightarrow\left(x-500\right).\left(x+600\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-500=0\\x+600=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}}\)

Vậy số khẩu trang công ti dự định may mỗi ngày là \(500\)khẩu trang 

6 tháng 7 2020

Gọi x là khẩu trang cty may đc mỗi ngày theo dự định \(\left(x\inℕ^∗\right)\)

Sau khi bổ sung thêm công nhân thì mỗi ngày may đc: \(x+100\) ( khẩu trang)

Số ngày để may khẩu trang theo dự định là:\(\frac{6000}{x}\)(ngày)

Số ngày để mày khẩu trang khi bổ sung thêm công nhân là:\(\frac{6000}{x+100}\)(ngày)

Vì hoàn thành sớm hơn 2 ngày so với dự định nên ta có pt:

\(\frac{6000}{x}-\frac{6000}{x+100}=2\)

\(\Rightarrow6000\left(x+100\right)-6000x=2x\left(x+100\right)\)

\(\Rightarrow2x^2+200x-600000=0\)

\(\Rightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}\)

Vậy dự đinh mỗi ngày cty mày đc 500 chiếc khẩu trang

23 tháng 5 2021

Gọi x là số giờ làm khẩu trang

Gọi y là số khẩu trang làm trong 1 giờ \(\left(ĐK:x;y>0\right)\) 

Theo đề, ta có 

\(\hept{\begin{cases}xy=400\\\frac{1}{2}xy+\left(\frac{1}{2}x-1\right)\left(y+100\right)=400\end{cases}}\)   

\(\hept{\begin{cases}xy=400\\\frac{1}{2}xy+50x-y-100=200\end{cases}}\)   

\(\hept{\begin{cases}xy=400\\50x-y=100\end{cases}}\)   

\(\hept{\begin{cases}y=\frac{400}{x}\\50x-\frac{400}{x}=100\end{cases}}\)   

\(\hept{\begin{cases}y=\frac{400}{x}\\50x^2-100x-400=0\end{cases}}\)    

\(\hept{\begin{cases}y=\frac{400}{x}\\x^2-2x-8=0\end{cases}}\)    

\(\hept{\begin{cases}y=\frac{400}{x}\\x=4\left(n\right);x=-2\left(l\right)\end{cases}}\)   

\(\hept{\begin{cases}y=100\\x=4\end{cases}}\)

19 tháng 2 2022

Gọi sản phẩm tổ khẩu trang ngày thứ nhất 2 tổ lần lượt là a ; b ( a ; b > 0 ) 

Theo bài ra ta có hệ \(\left\{{}\begin{matrix}a+b=1500\\\dfrac{35a}{100}+\dfrac{40b}{100}=565\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=700\\b=800\end{matrix}\right.\)(tm) 

Vậy ngày 2 tổ 1 sản xuất được \(\dfrac{35.700}{100}+700=245+700=945sp\)

tổ 2 sản xuất được \(\dfrac{40.800}{100}+800=320+800=1120sp\)

19 tháng 2 2022

Cảm ơn nhìu nhe :33

Gọi số khẩu trang ngày thứ nhất tổ 1 sản xuất được là x(cái), tổ 2 sản xuất được là y(cái)

(Điều kiện: \(x,y\in Z^+\))

Tổng số khẩu trang ngày thứ hai hai tổ sản xuất được là 1500 cái nên x+y=1500(1)

Số khẩu trang ngày thứ hai tổ 1 sản xuất được là:

\(x\left(1+35\%\right)=1,35x\left(cái\right)\)

Số khẩu trang ngày thứ hai tổ 2 sản xuất được là:

\(y\left(1+40\%\right)=1,4y\left(cái\right)\)

Ngày thứ hai hai tổ sản xuất được 2065 cái nên 1,35x+1,4y=2065(2)

Từ (1),(2) ta có hệ:

\(\left\{{}\begin{matrix}x+y=1500\\1,35x+1,4y=2065\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1,35x+1,35y=2025\\1,35x+1,4y=2065\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-0,05y=-40\\x+y=1500\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=800\\x=700\end{matrix}\right.\left(nhận\right)\)

Vậy: Trong ngày 1, tổ 1 sản xuất được 700 cái khẩu trang, tổ 2 sản xuất được 800 cái khẩu trang