Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn B
I 1 = I 2 ⇒ Z 1 = Z 2 ⇒ R Z 1 = R Z 2 ⇒ cos φ 1 = cos φ 2 ⇒ φ 1 = - φ 2 φ 1 - φ 2 = φ i 2 - φ i 1 = π 2 ⇒ φ 1 = - φ 2 = π 4 ⇒ cos φ 1 = cos φ 2 = cos π 4 ≈ 0 , 71

Áp dụng: \(P=\dfrac{U^2}{R}\cos^2\varphi\)
\(\Rightarrow 160=\dfrac{U^2}{R}.0,4^2\) (1)
\(340=\dfrac{U^2}{R}.\cos^2\varphi\) (2)
Lấy (1) chia (2) vế với vế ta tìm đc \(\cos\varphi = 0,6\)
\(P_1=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_1\)
\(P_2=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_2\)
\(cos\varphi_2=0,6\)
đáp án B

Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>

Với các góc đã cho ta có thể viết được các phương trình như sau
\(\tan\phi_1=\frac{Z_L}{R_1}\)
\(\tan\phi_2=\frac{Z_L}{R^2}\)
\(\tan\phi_1\tan\phi_2=1\)
\(Z_L=\sqrt{R_1R_2}\)
\(L=\frac{\sqrt{R_1R_2}}{2\pi f}\)

Em phải post mỗi câu hỏi 1 bài thôi nhé, để tiện thảo luận.
1. Điều kiện có sóng dừng trên dây có một đầu cố định một đầu tự do: \(L=(2n+1)\frac{\lambda}{4}=(2n+1)\frac{v}{4f}\) (L là chiều dài dây)
\(\Rightarrow n=\frac{1}{2}(\frac{4fL}{v}-1)\)
Do f từ 80Hz đến 120 Hz nên ta tìm được n thỏa mãn sẽ từ 12 đến 17
Do đó có 6 tần số có thể tạo sóng dừng trên dây.
2. Điều chỉnh C để công suất cực đại --> Cộng hưởng xảy ra ---> \(P=\dfrac{U^2}{R}=600(W)\)
Điều chỉnh C = C2 thì công suất sẽ là: \(P_2=\dfrac{U^2}{R}\cos^2(\varphi)=600.(\dfrac{\sqrt 3}{2})^2=450W\)

Mạch có cộng hưởng điện thì \(w=\frac{1}{\sqrt{LC}}\)
Tần số: \(f_0=\frac{\omega}{2\pi}=\frac{1}{2\pi\sqrt{LC}}\)
Đáp án B