K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

5+25=60

Tui đoán là thế đóa ko bít đúng ko nữa, móe

24 tháng 4 2020

36 em học lớp 3

28 tháng 6 2023

Đặt Albert; Bernard; Cheryl laf A;B;C

 Trong số 10 đáp án có ngày 18 và 19 chỉ xuất hiện 1 lần nếu sinh nhật của C vào hai ngày này chắc chắn B đã biết=>Loại 19/5 và 18/6

Nếu C nói với A tháng sinh là tháng 5 hoặc tháng 6 thì sinh nhật của C chỉ có thể là 19/5 hoặc 18/6

và B biết đáp án nhưng A khẳng định B không biết=> C noí với A tháng sinh của cô ấy là 7 hoặc 8

=>Loại tiếp 15/5;16/5;17/6

+) Trong số những ngày còn lại từ 15 đến 17 tháng 7 hoặc 8 ngày 14 xuất hiện 2 lần

Nếu C nói với B sinh nhật cô ấy là ngày 14 thì B không thể biết đáp án nhưng B lại biết=>Loại tiếp 14/7 và 14/8

Vậy còn 16/7;15/8;17/8

Sau câu nói của B thì A cũng biết=>Ngày đó 16/7 vì nếu C nói sinh nhật cô ấy vào tháng 8 thì A không thể biết vì có tới 2 ngày trong tháng 8

Vậy sinh nhật của C là 16/7

28 tháng 6 2023

16/7

Đề bài: Albert và Bernard vừa kết bạn với Cheryl. Họ muốn biết ngày sinh nhật của Cheryl. Sau đó, Cheryl đưa ra 10 đáp án: Ngày 15/5, ngày 16/5, ngày 19/5, ngày 17/6, ngày 18/6, ngày 14/7, ngày 16/7, ngày 14/8, ngày 15/8 và ngày17/8.Đề bài:Ba thành viên trong đội bóng nữ trường trung học Euclid nói chuyện với nhau.Ashley: Tớ vừa nhận ra số áo của bọn mình đều là những số nguyên tố có hai chữ...
Đọc tiếp

Đề bài: 

Albert và Bernard vừa kết bạn với Cheryl. Họ muốn biết ngày sinh nhật của Cheryl. Sau đó, Cheryl đưa ra 10 đáp án: Ngày 15/5, ngày 16/5, ngày 19/5, ngày 17/6, ngày 18/6, ngày 14/7, ngày 16/7, ngày 14/8, ngày 15/8 và ngày17/8.

Đề bài:

Ba thành viên trong đội bóng nữ trường trung học Euclid nói chuyện với nhau.

Ashley: Tớ vừa nhận ra số áo của bọn mình đều là những số nguyên tố có hai chữ số.

Bethany: Tổng hai số áo của các bạn là ngày sinh của tớ vừa diễn ra trong tháng này.

Caitlin: Ừ, vui thật, tổng hai số áo của các cậu lại là ngày sinh của tớ vào cuối tháng này.

Ashley: Và tổng số áo của các cậu lại đúng bằng ngày hôm nay.

Vậy Caitlin mặc áo số mấy?

(A) 11    (B) 13     (C) 17     (D) 19         (E) 23

Đây là bài toán khá thú vị và không quá khó để giải.

1

ý A

Ý A

ý A

k me

17 tháng 5 2020

Bài toán siêu học búa, chỉ 0,001% người giải được, nếu tìm ra đáp án đúng thì xin chúc mừng, IQ của bạn được xếp vào hàng tầm cỡ - Ảnh 2.

CÂU HỎI

11 tháng 1 2019

Chọn C.

Áp dụng phương pháp đồng nhất hệ số ta có:

Vậy 1/2 a + b = 1.

16 tháng 9 2021

 Quãng đường mà hình tròn A lăn được bằng quãng đường di chuyển của tâm hình tròn A. 
Tâm I của hình tròn A cách tâm hình tròn B một khoảng bằng 4 lần bán kính của hình tròn A (tương ứng, chu vi của đường tròn mà I vạch nên cũng gấp 4 lần chu vi hình A).
Vì vậy, hình A phải thực hiện 4 vòng quay mới trở lại điểm xuất phát. 
Thế nên chả có đáp án nào đúng cả

22 tháng 11 2016

Câu 3:

+)Vì BC vuông góc với cả SA và AB nên BC vuông góc với (SAB)

\(\Rightarrow\left(\widehat{SC,\left(SAB\right)}\right)=\widehat{BSC}=30^o\)

Ta có \(SB=\frac{BC}{tan\widehat{BSC}}=a\sqrt{3}\) , \(SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)

+)Sử dụng phương pháp tọa độ hóa

Xét hệ trục tọa độ Axyz, A là gốc tọa độ, B,D,S lầ lượt nằm trên các tia Ax, Ay, Az

\(\Rightarrow B\left(a;0;0\right),C\left(a;a;0\right),D\left(0;a;0\right),S\left(0;0;a\sqrt{2}\right)\)

\(\Rightarrow E\left(\frac{a}{2};\frac{a}{2};0\right),F\left(0;\frac{a}{2};\frac{a}{\sqrt{2}}\right)\)

Như vậy là biết tọa độ 4 điểm D,E,F,C ta có thể viết phương trình 2 đường thẳng DE, FC và tính khoảng cách theo công thức sau

\(d\left(DE;FC\right)=\frac{\left|\left[\overrightarrow{DE.}\overrightarrow{FC}\right]\overrightarrow{EC}\right|}{\left|\overrightarrow{DE.}\overrightarrow{FC}\right|}\) (không nhớ rõ lắm)

22 tháng 11 2016

Câu 5:

Gọi I là trung điểm BC, dễ thấy BC vuông góc với (AIA') (vì BC vuông góc với IA,IA')

Từ I kẻ IH vuông góc với AA' tại H

suy ra IH là đường nố vuông góc chung của BC và AA' hay IH chính là khoảng cách của 2 đường thẳng BC và AA'

Tính được IA=a và IA'=\(a\sqrt{3}\)

Lại có tam giác AIA' vuông tại I, có đường cao IH nên ta dùng hệ thức:

\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{A'I^2}\Rightarrow IH=\frac{a\sqrt{3}}{2}\)