Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt Albert; Bernard; Cheryl laf A;B;C
Trong số 10 đáp án có ngày 18 và 19 chỉ xuất hiện 1 lần nếu sinh nhật của C vào hai ngày này chắc chắn B đã biết=>Loại 19/5 và 18/6
Nếu C nói với A tháng sinh là tháng 5 hoặc tháng 6 thì sinh nhật của C chỉ có thể là 19/5 hoặc 18/6
và B biết đáp án nhưng A khẳng định B không biết=> C noí với A tháng sinh của cô ấy là 7 hoặc 8
=>Loại tiếp 15/5;16/5;17/6
+) Trong số những ngày còn lại từ 15 đến 17 tháng 7 hoặc 8 ngày 14 xuất hiện 2 lần
Nếu C nói với B sinh nhật cô ấy là ngày 14 thì B không thể biết đáp án nhưng B lại biết=>Loại tiếp 14/7 và 14/8
Vậy còn 16/7;15/8;17/8
Sau câu nói của B thì A cũng biết=>Ngày đó 16/7 vì nếu C nói sinh nhật cô ấy vào tháng 8 thì A không thể biết vì có tới 2 ngày trong tháng 8
Vậy sinh nhật của C là 16/7
Chọn C.
Áp dụng phương pháp đồng nhất hệ số ta có:
Vậy 1/2 a + b = 1.
Quãng đường mà hình tròn A lăn được bằng quãng đường di chuyển của tâm hình tròn A.
Tâm I của hình tròn A cách tâm hình tròn B một khoảng bằng 4 lần bán kính của hình tròn A (tương ứng, chu vi của đường tròn mà I vạch nên cũng gấp 4 lần chu vi hình A).
Vì vậy, hình A phải thực hiện 4 vòng quay mới trở lại điểm xuất phát.
Thế nên chả có đáp án nào đúng cả
Câu 3:
+)Vì BC vuông góc với cả SA và AB nên BC vuông góc với (SAB)
\(\Rightarrow\left(\widehat{SC,\left(SAB\right)}\right)=\widehat{BSC}=30^o\)
Ta có \(SB=\frac{BC}{tan\widehat{BSC}}=a\sqrt{3}\) , \(SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)
+)Sử dụng phương pháp tọa độ hóa
Xét hệ trục tọa độ Axyz, A là gốc tọa độ, B,D,S lầ lượt nằm trên các tia Ax, Ay, Az
\(\Rightarrow B\left(a;0;0\right),C\left(a;a;0\right),D\left(0;a;0\right),S\left(0;0;a\sqrt{2}\right)\)
\(\Rightarrow E\left(\frac{a}{2};\frac{a}{2};0\right),F\left(0;\frac{a}{2};\frac{a}{\sqrt{2}}\right)\)
Như vậy là biết tọa độ 4 điểm D,E,F,C ta có thể viết phương trình 2 đường thẳng DE, FC và tính khoảng cách theo công thức sau
\(d\left(DE;FC\right)=\frac{\left|\left[\overrightarrow{DE.}\overrightarrow{FC}\right]\overrightarrow{EC}\right|}{\left|\overrightarrow{DE.}\overrightarrow{FC}\right|}\) (không nhớ rõ lắm)
Câu 5:
Gọi I là trung điểm BC, dễ thấy BC vuông góc với (AIA') (vì BC vuông góc với IA,IA')
Từ I kẻ IH vuông góc với AA' tại H
suy ra IH là đường nố vuông góc chung của BC và AA' hay IH chính là khoảng cách của 2 đường thẳng BC và AA'
Tính được IA=a và IA'=\(a\sqrt{3}\)
Lại có tam giác AIA' vuông tại I, có đường cao IH nên ta dùng hệ thức:
\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{A'I^2}\Rightarrow IH=\frac{a\sqrt{3}}{2}\)
5+25=60
Tui đoán là thế đóa ko bít đúng ko nữa, móe
36 em học lớp 3