Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông AHB (^AHB = 90°) ta có:
AB2 = AH2 + HB2 (vì bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông).
hay 52 = 32 + HB2
=> HB2 = 52 - 32 = 25 - 9 = 16.
HB = \(\sqrt{16}\) = 4.
Vậy HB = 4m.
Độ dài cạnh CH là:
CH = BC - HB
hay CH = 10 - 4 = 6 (m)
Vậy cạnh CH = 6m.
Xét tam giác vuông AHC (^AHC = 90°) ta có:
AC2 = AH2 + CH2
hay AC2 = 32 + 62 = 9 + 36 = 45.
AC = \(\sqrt{45}\approx7.\)
Vậy AC \(\approx7m\).
Độ dài ACD là:
ACD = AC + CD
hay ACD = 7 + 2 = 9 (m).
Vậy ACD = 9m.
2 lần BA là:
5.2 = 10 (m)
Vậy 2 lần BA = 10m.
Mà ACD < BA (9 < 10) nên đường trượt ACD ko gấp hơn hai lần đường lên BA.
Vậy bạn Mai nói sai, bạn Vân nói đúng.
a. Xét ΔAMB và ΔAMC, ta có:
AM = AC (gt)
BM = CM (gt)
AM cạnh chung
Suy ra: ΔAMB = ΔAMC (c.c.c)
Suy ra: ∠(AMB) = ∠(AMC) (1)
Lại có: ∠(AMB) + ∠(AMC) = 180o (hai góc kề bù) (2)
Từ (1) và (2) suy ra: ∠(AMB) = ∠(AMC) = 90o
Vậy AM ⊥ BC.
b. Tam giác AMB có ∠(AMB) = 90o
Áp dụng định lí Pi-ta-go vào tam giác vuông AMB, ta có:
AB2 = AM2 + BM2 ⇒ AM2 = AB2 - BM2 = 342 - 162
= 1156 - 256 = 900
Suy ra: AM = 30 (cm).
+ ΔAHB vuông tại H
Theo định lí Py–ta- go ta có
HB2 = AB2 – AH2 = 52 – 32 =25 - 9 =16
Suy ra HB = 4 (cm)
Suy ra HC = BC – HB = 10 - 4 = 6(cm)
+ ΔAHC vuông tại H
Theo định lí Py-ta-go ta có
AC2 = AH2 + HC2 = 32 + 62 = 9 + 36 = 45.
Suy ra AC = √45 ≈ 6,7(m)
Độ dài đường trượt ACD bằng: 6,7 + 2= 8,7 (m)
Và hai lần đường lên BA bằng 5.2 =10 (m)
Đo độ dài đường trượt ACD chưa bằng hai lần đườg lên BA
Vậy bạn Mai nói sai, bạn Vân nói đúng.