Đồ th...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Bài này có vẻ lẻ quá bạn.

\(W_t=4W_đ\Rightarrow W_đ=\dfrac{W_t}{4}\)

Cơ năng: \(W=W_đ+W_t=W_t+\dfrac{W_t}{4}=\dfrac{5}{4}W_t\)

\(\Rightarrow \dfrac{1}{2}kA^2=\dfrac{5}{4}.\dfrac{1}{2}kx^2\)

\(\Rightarrow x = \pm\dfrac{2}{\sqrt 5}A\)

M N O α α

Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.

\(\cos\alpha=\dfrac{2}{\sqrt 5}\)\(\Rightarrow \alpha =26,6^0\)

Thời gian nhỏ nhất là: \(\Delta t=\dfrac{26,6\times 2}{360}.T=\dfrac{26,6\times 2}{360}.\dfrac{2\pi}{20}=0.046s\)

21 tháng 7 2016

bạn ơi cho mình hỏi thời gian nhỏ nhất hay lớn nhất thì cách tính vẫn vậy hả?

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

1 tháng 6 2016
 

Độ giãn của lò xo tại VTCB: \(\Delta l_0=\frac{9}{\omega^2}=2cm\)

Lực đàn hồi có độ lớn 1,5 N
\(F=k.\left(\Delta l\pm x\right)\Leftrightarrow1,5=50.\left(0,02\pm x\right)\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1cm\\x=-1cm\end{array}\right.\)

Khoảng thời gian ngắn nhất vật đi qua hai vị trí mà lực đàn hồi F = 1,5 N là : 
\(t=\frac{T}{12}+\frac{T}{12}=\frac{\pi}{30\sqrt{5}}=s\)

Đáp án C

7 tháng 10 2018

bài này mấy đứa ôn lí 11 cug đc hokn mà

7 tháng 10 2018

\(\dfrac{W_a}{W_b}=\dfrac{\dfrac{1}{2}m.v_1max^2}{\dfrac{1}{2}m.v_2max^2}=\dfrac{g.l_1.\alpha o1^2}{g.l_2.\alpha o^2}\)

dao động nhỏ nên anpha xấp xỉ sin anpha
B là 2
A là 1

tỉ số cơ năng là....

30 tháng 5 2017

dap an c


31 tháng 5 2017

Làm tương tự bài này Câu hỏi của Nguyễn Lê Quỳnh Anh - Vật lý lớp 12 | Học trực tuyến

25 tháng 1 2016

Từ ĐK đầu bài ta có: Zc^{2}=r^{2}+Zl^{2}=r^{2}+(Zl-Zc)^{2}\Rightarrow Zc=2Zl=100\Rightarrow \omega ^{2}=\frac{1}{2LC}
tần số dao động riwwng của mạch là:(80\Pi )^{2}=\frac{1}{L(C-\Delta C)}\Rightarrow L.C-L\Delta C=\frac{1}{80^{2}.10}\Rightarrow \frac{1}{2\omega^{2}}-\frac{50}{\omega }.\frac{0,125.10^{-3}}{\Pi }=\frac{1}{80^{2}.10}
giải phương trình bâc 2 này ra ta được: \omega =40\Pi

25 tháng 1 2016

Z=Z_{C}=Z_{Lr}=100\Omega

Z_{C}=2Z_{L}\Rightarrow \frac{1}{\omega C}=2\omega L\Rightarrow \frac{1}{LC}=2\omega ^{2}(1)

{\omega _{0}}^{2}=\frac{1}{L(C+\Delta C)}(2)

Lấy (1) chia (2) ta được:  \frac{2\omega ^{2}}{{\omega _{0}}^{2}}=\frac{C+\Delta C}{C}


 

27 tháng 10 2015

Cơ năng: \(W=0,064+0,096=0,16J\) \(\Rightarrow v_{max}=\sqrt{3,2}\)(m/s)

+ Thời điểm t1: \(v_1=\sqrt{1,92}\)(m/s)

+ Thời điểm t2: \(v_2=\sqrt{1,28}\)(m/s)

Biểu diễn sự biến thiên vận tốc bằng véc tơ quay ta có: 

√3,2 √1,28 √1,92 v O M N

Do \(v_1^2+v_2^2=v_{max}^2\) nên OM vuông góc ON.

Như vậy góc quay là \(90^0\)

Thời gian: \(t=\frac{1}{4}T=\frac{\pi}{48}\Rightarrow T=\frac{\pi}{12}\)

\(\Rightarrow\omega=24\)(rad/s)

Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{\sqrt{3,2}}{24}=0,07m=7cm\)

23 tháng 10 2015

tại t_2 ta có

W_đ/W_t = 1 --> x=A/\eqrt{2}

W_đ = W_t -->W= 2 W_đ =0.128

tại t=0 W_t = W-W_đ =0.032 -->W_đ /W_t =3 hay  x =+-A/2

w= 20 rad/s W=1/2w^2*m*A^2 --->A=8

t/12+T/8 =5T/24=\pi/48 -->T=0.1\pi

24 tháng 7 2016

Một con lắc lò xo dao động theo phương trình x = 4cos10t 

\(W_t=W=\frac{1}{2}k.A^2=\frac{1}{2}m.w^2.A^2=8.10^{-3}=8\left(mJ\right)\)

Vậy C đúng

24 tháng 7 2016

Thế  năng cực đại của con lắc lò xo: 

\(W_t=W=\frac{1}{2}k.A^2=\frac{1}{2}.m.\omega^2.A^2=8.10^{-3}=8mJ\)

Chọn C