\(y=\dfrac{a}{x}\) (a là hằng số dương) là một đường hypebol. Chứng min...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Phương trình tiếp tuyến tại M(x0; y0)M(x0; y0) là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Suy ra diện tích tam giác OAB là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

8 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Phương trình tiếp tuyến tại M ( x 0 ;   y 0 ) là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Suy ra diện tích tam giác OAB là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

5 tháng 12 2019

- Ta có : 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2) 

Lấy điểm  M ( x 0 ;   y 0 )   ∈   C .

+ Phương trình tiếp tuyến tại điểm M là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

+ Giao với trục hoành:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

+ Giao với trục tung:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn D

11 tháng 4 2017

Ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Lấy điểm M(x0;y0) ∈ (C).

- Phương trình tiếp tuyến tại điểm M là:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+ Giao với trục hoành: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+ Giao với trục tung: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

17 tháng 5 2021

Điều kiện: \(x\ne1\)

a) Xét phương trình: \(\frac{x^2-2mx+3m-2}{x-1}=0\Leftrightarrow x^2-2mx+3m-2=0\)\(\left(x-1\ne0\right)\)

Pt có hai nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow m^2-3m+2>0\Leftrightarrow\orbr{\begin{cases}m>2\\m< 1\end{cases}}\)

Khi đó \(\hept{\begin{cases}x_1=m-\sqrt{m^2-3m+2}\\x_2=m+\sqrt{m^2-3m+2}\end{cases}}\)

+) \(x_1,x_2\ne1\Leftrightarrow\hept{\begin{cases}m-\sqrt{m^2-3m+2}\ne1\\m+\sqrt{m^2-3m+2}\ne1\end{cases}\Leftrightarrow m\ne1}\)

+) Tiếp tuyến của đồ thị tại hai giao điểm với trục Ox vuông góc với nhau

\(\Leftrightarrow\hept{\begin{cases}y'\left(x_1\right)=-1\left(1\right)\\y'\left(x_2\right)=1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\frac{\left(2x_1-2m\right)\left(x_1-1\right)-\left(x_1^2-2mx_1+3m-2\right)}{\left(x_1-1\right)^2}=-1\)

\(\Leftrightarrow\frac{m-1}{\left(x_1-1\right)^2}=2\Rightarrow m-1=2\left(m-\sqrt{m^2-3m+2}-1\right)^2\)

\(\Leftrightarrow\left(m-1\right)\left[1-2\left(2m-3-2\sqrt{m^2-3m+2}\right)\right]=0\)

\(\Leftrightarrow4\sqrt{m^2-3m+2}=4m-7\Leftrightarrow\hept{\begin{cases}m\ge\frac{7}{4}\\m=\frac{17}{8}\end{cases}}\Leftrightarrow m=\frac{17}{8}\)(t/m m>2 v m<1)

Giải (2) cho ra \(m=1\)(loại). Vậy m cần tìm là \(m=\frac{17}{8}.\)