Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x+\frac{1}{x^2}=\frac{x}{8}+\frac{x}{8}+\frac{1}{x^2}+\frac{3x}{4}\ge3\sqrt[3]{\frac{x}{8}.\frac{x}{8}.\frac{1}{x^2}}+\frac{3.2}{4}=\frac{3}{4}+\frac{6}{4}=\frac{9}{4}\) ( áp dụng cô- si cho 3 số không âm )
Dấu "=" xảy ra <=> x = 2
c/ Ta có:\(6a-5b=1\)
\(\Rightarrow5b=6a-1\)
Theo đề thì: \(A=4a^2+\left(6a-1\right)^2=40a^2-12a+1\)
\(=\left(\left(2\sqrt{10}a\right)^2-\frac{2.2.\sqrt{10}.3a}{\sqrt{10}}+\frac{9}{10}\right)+\frac{1}{10}\)
\(=\left(2\sqrt{10}a-\frac{3}{\sqrt{10}}\right)^2+\frac{1}{10}\ge\frac{1}{10}\)
vì a2> hoặc =0 => áp dụng BDT cauchy ta có:
a2+1/a2> hoặc = 2
=> GTNN của bt = 2 khi và chỉ khi a2=1/a2 <=> a=1
Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra khi \(a=b\)
Bài tập :
Có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{x}+\dfrac{x+y}{y}=2+\dfrac{x}{y}+\dfrac{y}{x}\) ( do \(x+y=1\) )
Theo BĐT trên có : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)
Nên \(A\ge2+2=4\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) (tự cm)
Lại có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\)
Áp dụng BĐT trên ta có : : \(xy\le\left(\dfrac{x+y}{2}\right)^2\)
\(\Leftrightarrow A\ge\dfrac{x+y}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{1}{\dfrac{1}{2^2}}=4\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy...
Có: A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{x+y}{xy}\) =\(\dfrac{1}{xy}\) ( do x+y=1)
Áp dụng bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ,dâú bằng xảy ra khi a=b, ta có:
A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{1}{xy}\) ≥ \(\dfrac{2}{x+y}\) =\(\dfrac{2}{1}\) =2 ( x+y=1)
dấu bằng xảy ra khi x=y=0,5.
c/m bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ⇔ a+b ≥ 2\(\sqrt{ab}\)
⇔(a+b)2 ≥ 4ab
⇔a2 +b2 +2ab≥ 4ab
⇔(a-b)2 ≥ 0 (luôn đúng)
dấu bằng xảy ra khi a=b.
\(\dfrac{a+b}{2}\ge\sqrt{ab}\left(\circledast\right)\\ \Leftrightarrow a+b\ge2\sqrt{ab}\\ \Leftrightarrow\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2=\left(a-b\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vậy BĐT (*) được chứng minh.
\(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{1}{xy}\)
__________________________________
\(\dfrac{x+y}{2}\ge\sqrt{xy}\\ \Rightarrow\sqrt{xy}\le\dfrac{1}{2}\\ \Rightarrow xy\le\dfrac{1}{4}\\ \Rightarrow A=\dfrac{1}{xy}\ge\dfrac{1}{\dfrac{1}{4}}=4\)
Vậy GTNN của A = 4
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
\(S=\dfrac{a}{8}+\dfrac{a}{8}+\dfrac{1}{a^2}+\dfrac{3a}{4}\ge3\sqrt[3]{\dfrac{a^2}{8a^2}}+\dfrac{3\cdot2}{4}=\dfrac{3}{4}+\dfrac{3}{2}=\dfrac{9}{4}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{1}{a^2}\\a=2\end{matrix}\right.\Leftrightarrow a=2\)