K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2023

a.

Hệ có nghiệm duy nhất khi:

\(\dfrac{m}{2}\ne\dfrac{1}{-1}\Rightarrow m\ne-2\)

b.

Hệ có vô số nghiệm khi:

\(\dfrac{1}{1}=\dfrac{m}{-1}=\dfrac{3}{3}\Rightarrow m=-1\)

c.

Hệ vô nghiệm khi:

\(\dfrac{2}{-4}=\dfrac{-1}{2}\ne\dfrac{-m}{4}\Rightarrow m\ne2\)

27 tháng 6 2021

cứ thủ công đi bro =))

7 tháng 1 2018

Mình ko giải đc ko

7 tháng 1 2018

MỤC ĐÍCH CỦA MÀY LÀ QUẢNG CÁO NHẠC THÌ YÊU CẦU CÚT OK?

CÒN NẾU MÀY MÀY MUỐN HỎI THẬT SỰ THÌ XIN MÀY CHỈ GÕ ĐỀ TOÁN VÀ ĐỪNG CHO THÊM MẤY THỨ TẠP CHẤT KIA VÀO.

CHỨ KHÔNG PHẢI LÀ HỎI MỘT CÁCH CHỐNG CHẾ KIA NHÉ 

16 tháng 6 2018

C nguyên <=> \(4x+3⋮x^2+1\)

<=> \(4x^2+3x⋮x^2+1\left(1\right)\)

Ta có \(4x^2+4⋮x^2+1\left(2\right)\)

Lấy (1)-(2) <=>\(3x-4⋮x^2+1\) <=> \(12x-16⋮x^2+1\left(3\right)\)

Có \(4x+3⋮x^2+1\)

<=>\(12x+9⋮x^2+1\left(4\right)\)

Từ (3); (4) ta có <=>\(25⋮x^2+1\)

Do x2+1 luôn \(\ge1\)nên \(x^2+1\in\left\{1,5,25\right\}\)

Do x nguyên nên ta giải ra \(x\in\left\{0,\pm2\right\}\)

17 tháng 6 2018

BÙI VĂN LỰC Tại sao lại sai hả bạn ^_^

26 tháng 5 2017

\(=\frac{25}{4}-\left(x-\frac{1}{2}\right)^2\) xuống lớp 7 học đi nhé

26 tháng 5 2017

GTLN \(-x^2\)+\(x\)+\(6\)=\(-\left(x^2-x-6\right)\)

=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}-6\right)\)=\(-\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\)

=\(\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\)\(\ge\)\(0\)Nên \(\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\)\(\ge0\)

Vậy GTLN của biểu thức là \(\frac{25}{4}\)khi \(x=\frac{1}{2}\)

11 tháng 7 2021

9.

a, \(x^4-x^3-14x^2+x+1=0\)

\(< =>x^4+3x^3-x^2-4x^3-12x^2+4x-x^2-3x+1=0\)

\(< =>x^2\left(x^2+3x-1\right)-4x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)=0\)

\(< =>\left(x^2-4x-1\right)\left(x^2+3x-1\right)=0\)

\(=>\left[{}\begin{matrix}x^2-4x-1=0\left(1\right)\\x^2+3x-1=0\left(2\right)\end{matrix}\right.\)

giải pt(1) \(=>x^2-4x+4-5=0< =>\left(x-2\right)^2-\sqrt{5}^2=0\)

\(=>\left(x-2-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)=0\)

\(=>\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\)

giải pt(2) \(\)\(=>x^2+3x-1=0< =>x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{13}{4}=0\)

\(< =>\left(x+\dfrac{3}{2}\right)^2-\left(\dfrac{\sqrt{13}}{2}\right)^2=0\)

\(=>\left(x+\dfrac{3}{2}+\dfrac{\sqrt{13}}{2}\right)\left(x+\dfrac{3}{2}-\dfrac{\sqrt{13}}{2}\right)=0\)

tương tự cái pt(1) ra nghiệm rồi kết luận

b, đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)=>x^2+1=a^2\)

\(=>x^4=\left(a^2-1\right)^2\)

\(=>pt\) \(\left(a^2-1\right)^2+a^2.a-1=0\)

\(=>a^4-2a^2+1+a^3-1=0\)

\(< =>a^4-2a^2+a^3=0< =>a^2\left(a+2\right)\left(a-1\right)=0\)

\(->\left[{}\begin{matrix}a=0\left(ktm\right)\\a=-2\left(ktm\right)\\a=1\left(tm\right)\end{matrix}\right.\)rồi thế a vào \(\sqrt{x^2+1}\)

\(=>x=0\)