K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

Gọi số cần tìm là a.

Ta có: a2 = a ⇔ a2 – a = 0 ⇔ a (a – 1) = 0 ⇔ a = 0 hoặc a – 1 = 0 ⇔ a = 0 hoặc a = 1

Vậy số cần tìm là 0 hoặc 1.

13 tháng 5 2017

a) 0 ; 1

b) 0 ; 1 ; -1

18 tháng 2 2016

a. ta thấy các số từ 2 bình phương trở lên là số lớn hơn chính nó len số cần tìm sẽ nhỏ hơn 2 vậy ta kết luận số cần tim là 0 và 1

b. tương tự như phần a.

18 tháng 2 2016

a. số 1 và 0

b) số 1, -1, 0

1 tháng 4 2018

Số đó là 0 và 1  ko tin thì thử xem

1 tháng 4 2018

Gọi số đó là (ab) 
(ab)^2=(a+b)^3 
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số 
(ab) = 27 hoặc 64 
chỉ có 27 thỏa mãn 
vậy (ab)=27

4 tháng 1 2019

Gọi số cần tìm là b.

Ta có: b3 = b ⇔ b3 – b = 0 ⇔ b (b2 – 1) = 0

⇔ b = 0 hoặc b2 = 1

⇔ b = 0 hoặc b = 1 hoặc b = -1

Vậy số cần tìm là 0 hoặc 1 hoặc -1.

24 tháng 10 2017

(ab)^2=(a+b)^3 
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số 
(ab) = 27 hoặc 64 
chỉ có 27 thỏa mãn 
vậy (ab)=27

24 tháng 10 2017
bằng27
AH
Akai Haruma
Giáo viên
28 tháng 9

Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$

Theo bài ra ta có:

$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.

Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.

$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$

$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.

Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.

Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn 

Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.

AH
Akai Haruma
Giáo viên
28 tháng 9

Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.

Theo bài ra ta có:

$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$

Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.

$\Rightarrow a+b\vdots 11$.

Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$

$\Rightarrow a+b=11$

$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$

Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$