K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

Chọn đáp án C

16 tháng 2 2019

Chọn đáp án B

7 tháng 2 2023

`\triangle ABC` đều nội tiếp `(O;R)`

`=>R=2/3` đường cao `\triangle ABC`

Mà đường cao `\triangle ABC=[\sqrt{3}a]/2`

  `=>R=2/3 .[\sqrt{3}a]/2=[\sqrt{3}a]/3`

  `->\bb C`

24 tháng 6 2017

(B) 2r\(\sqrt{3}\)

21 tháng 7 2017

Chọn đáp án B

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:

$\widehat{AOB}=2\widehat{ACB}=2.45^0=90^0$
Tam giác $OAB$ vuông cân tại $O$ nên $OA=\frac{AB}{\sqrt{2}}=\frac{a}{\sqrt{2}}$

Chu vi hình tròn $(O)$:

$2\pi OA=a\sqrt{2}\pi$ 

Độ dài cung nhỏ AB: $a\sqrt{2}\pi.\frac{90^0}{360^0}=\frac{a\sqrt{2}\pi}{4}$

Đáp án B.

2 tháng 5 2017

(C)

3 tháng 5 2017

Giải:

Tỉ số bán kính đường tròn nội tiếp và đường tròn ngoại tiếp một tam giác đều bằng

(A) \(\dfrac{1}{3}\) (B) \(\dfrac{1}{2}\) (C) \(\dfrac{1}{\sqrt{2}}\) (D) 2

12 tháng 4 2017

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)

b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).

Ta có: R= OA = AA' = . = . = √3 (cm).

c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.

r = OA' = AA' = = (cm)

d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).



12 tháng 4 2017

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)

b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).

Ta có: R= OA = AA' = . = . = √3 (cm).

c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.

r = OA' = AA' = = (cm)

d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).

19 tháng 1 2022

Giả sử \(\Delta ABC\)đều ngoại tiếp đường tròn (I), khi đó ta cần tính BC (hoặc AB, AC đều được)

Kẻ đường cao AH của \(\Delta ABC\). Nối B với I.

Ta ngay lập tức có BI là tia phân giác của \(\widehat{ABC}\)(vì I là tâm đường tròn nội tiếp \(\Delta ABC\))

Mà \(\widehat{ABC}=60^0\)(do \(\Delta ABC\)đều) \(\Rightarrow\widehat{IBH}=\frac{60^0}{2}=30^0\)

\(\Delta IBH\)vuông tại H \(\Rightarrow BH=IH.\cot\widehat{IBH}=r.\cot30^0=r\sqrt{3}\)

Mặt khác \(\Delta ABC\)đều có đường cao AH \(\Rightarrow\)AH cũng là trung tuyến \(\Rightarrow\)H là trung điểm BC

\(\Rightarrow BC=2BH=2r\sqrt{3}\)\(\Rightarrow\)Chọn ý thứ ba.