Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cạnh là \(\sqrt[3]{27}=3\left(cm\right)\left(B\right)\)
Diện tích của một mặt hình lập phương là x 2
Hình lập phương có 6 mặt nên có diện tích toàn phần 6 x 2
Hình như đề sai nha bạn
khi đó x + y + z = 1 ; x3 + y3 + z3 = 3
mà (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x)
<=> 13 = 3 + 3(x + y)(y + z)(z + x)
<=> 3(x + y)(y + z)(z + x) = -2 (vô lý vì 3(x + y)(y + z)(z + x) > 0)
Iuukweewddukhkhuckekwhkuekcwuhwdikeuldkhscuhkjdcshudscjhukidschfshjrskdhjfursiuhukerfhevkhgyrukeaguukeeafduuhkafeuiehfugkurfrfaegukurgfeuwukfegukuqrfrekgquufrequgkuefqehhmeihuewkfkihurfewuhkifrekwhhubrhefjwkhjbkefeqhebfeqkehbfjkeahejchkeajhhkeceahjbkceeabhjrevahkbjreahhjvjbhkvfhhjkfvsrhhkjbhkrjfeahjhkvreajhbkvesrhvbjerahjbkrfeajhhkefrahhikferahhkjfreahhrfeajfrehuiqkrhehiakfhfhhrefkiuahiukrfea
Vì h = 2R nên V = π R 2 h = π R 2 .2R=2π R 3
Mặt khác: V = 128π => R = 4cm
=> h = 8cm, Sxq = 2πRh = 64π c m 2
Diện tích hình vuông cạnh c là \(S=c^2\)
Tổng diện tích hai hình chữ nhật là \(S_1=2ab\)
Xét tg vuông có \(c^2=a^2+b^2\)
Áp dụng cosi có
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Rightarrow a^2+b^2\ge2ab\) Dấu = xảy ra khi \(a=b\)
\(\Rightarrow S\ge S_1\left(dpcm\right)\)
\(S=S_1\) Khi a=b => tg ban đầu phải là tg vuông cân
Gọi S’ là giá trị của S khi giảm đi 16 lần, x’ là cạnh hình lập phương khi S giảm đi 16 lần.
Vậy khi S giảm đi 16 lần thì cạnh hình vuông giảm đi 4 lần.
igfkdynjjiklfkjjvilhtfffgugdhrcjfifyijjcdjcjcjctrutcvrucycrjkbnkvcjlnnjklnhcnvjvkjbnkjffjnk;khknl;kcjc.n/b