K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

gọi cạnh huyền là a và 2 cạnh góc vuông là b,c (cạnh thứ 3 là c\(;\)\(b,c>0,a>50\)\(\Rightarrow\) a,b có độ dài là 2 số nguyên tố 

\(\Rightarrow\)\(a,b\ne2\) (do có hiệu là 50)

ta có : \(a=b+50\)

\(\Rightarrow\)\(c^2=a^2-b^2=100b+2500\)

để c nhỏ nhất thì c^2 nhỏ nhất \(\Rightarrow\) b là số nguyên tố nhỏ nhất khác 2 thoả mãn \(100b+2500\) là số chính phương nhỏ nhất

thử chút ta thấy \(b=11\) là giá trị b cần tìm \(\Rightarrow\)\(\hept{\begin{cases}a=11+50=61\\c=\sqrt{61^2-11^2}=60\end{cases}}\) (nhận)

Câu 1:

Diện tích tam giác đều cạnh 3cm là:

\(S=\dfrac{3^2\cdot\sqrt{3}}{4}=\dfrac{9\sqrt{3}}{4}\left(cm^2\right)\)

Câu 2: 

Nửa chu vi tam giác là:

\(P=\dfrac{C}{2}=\dfrac{8+8+6}{2}=\dfrac{22}{2}=11\left(cm\right)\)

Diện tích tam giác là:

\(S=\sqrt{P\cdot\left(P-A\right)\cdot\left(P-B\right)\cdot\left(P-C\right)}=\sqrt{11\cdot\left(11-8\right)^2\cdot\left(11-6\right)}\)

\(=\sqrt{11\cdot5\cdot9}=3\sqrt{55}\left(cm^2\right)\)

23 tháng 7 2016

 Ta có 
AM -AH =BC/2 - AH =7 
=> BC -2AH =14 
=> 2AH = BC-14 (1*) 

Mặt khác: 
AB+BC+CA= 72 
=> AB+CA = 72-BC 
=> (AB+AC)^2 = (72-BC)^2 

=> AB^2 + CA^2 + 2BC.AH = 72^2 - 144BC + BC^2 (do AB.AC = BC.AH) 

=> 2BC.AH = 5184 - 144BC (2*) 

Thay (1*) vào (2*) 

=> BC(BC-14) = 5184 - 144BC 
=> BC^2 + 130BC - 5184 =0 
=> sqrt(delta) =194 
=> BC = (-130 + 194)/2 = 32 
=> AH = (BC-14)/2 = 9 
=> S(ABC) =BC.AH/2 = 144 cm^2

30 tháng 7 2017

Gọi a;b là độ dài 2 cạnh góc vuông. Do tam giác vuông; ta có: 

Độ dài cạnh huyền = √(a²+b²) 

Độ dài đường cao = ab/√(a²+b²) 


Do đó chu vi = a+b+√(a²+b²) = 72 (1) 


Hiển nhiên trung tuyến phải dài hơn đường cao nên ta có: 

1/2.√(a²+b²) -ab/√(a²+b²) = 7 

<=> (a²+b²) -2ab = 14√(a²+b²) (2) 


Kết hợp (1) và (2) ta được: 

a²+b² -2ab = 14.(72-a-b) 

<=> a²+b² +14a +14b -1008 = 2ab 

<=> (a+b)² +14(a+b) -1008 = 4ab (3) 


Từ (1) ta có: 

√(a²+b²) = 72-a-b 

<=> a²+b² = a²+b²+5184 -144a-144b +2ab 

<=> 144(a+b) = 2ab +5184 

<=> a+b = ab/72 +36 (4) 


Thay (4) vào (3) ta được: 

(ab/72 +36)² +14.(ab/72 +36) -1008 = 4ab 

<=> (ab +2592)² + 14.72.(ab+2592) -1008.72² = 4.72²ab 

<=> (ab)² +5184(ab) +2592² +1008(ab) -4.72²(ab) +14.72.2592 -1008.72² =0 

<=> (ab)² -14544(ab) +4105728 =0 

<=> (ab -14256)(ab -288) =0 


Thử lại: 

Nếu: ab = 14256 thì a+b = 14256/72 +36 = 234 

Giải pt: X² -234X +14256 =0 

Ta thấy: Δ' = 117²-14256 = -567 <0 nên pt vô nghiệm 


Nếu: ab = 288 thì a+b = 288/72 +36 = 40 

Giải pt: X² -40X² +288 =0 

Ta được: X1 = 20 -4√7 ; X2 = 20 +4√7 

Đây là độ dài 2 cạnh góc vuông. Từ đây tính được cạnh huyền và đường cao thấy thỏa gt. 


Kết luận: Tam giác đã cho có diện tích là 144 (=ab/2)