K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

\(h\left( x \right) =  - 0,1{x^2} + x - 1\) có \(\Delta  = \frac{3}{5} > 0\), có hai nghiệm phân biệt là \({x_1} = 5 - \sqrt {15} ;{x_2} = 5 + \sqrt {15} \)

Ta có bảng xét dấu như sau

 

Vậy khoảng bóng nằm trên vành rổ là \(x \in \left( {1,2;8,9} \right)\)mét
          khoảng bóng nằm dưới vành rổ là \(x \in \left( { - \infty ;1,2} \right) \cup \left( {8,9; + \infty } \right)\) mét
          khoảng bóng nằm ngang vành rổ là \(x \simeq \left\{ {1,2;8,9} \right\}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Để quả bóng có thể ném được qua lưới cao 2 m thì \(y = f\left( x \right) =  - 0,03{x^2} + 0,4x + 1,5 > 2\)

\( \Rightarrow f\left( x \right) =  - 0,03{x^2} + 0,4x - 0,5 > 0\)

Xét tam thức \(f\left( x \right) =  - 0,03{x^2} + 0,4x - 0,5\) có \(\Delta  = 0,1 > 0\), có hai nghiệm phân biệt là \({x_1} \simeq 1,4;{x_2} \simeq 11,9\) và có \(a =  - 0,03 < 0\)

Ta có bảng xét dấu như sau

Vậy để quả bóng có thể ném được qua lưới cao 2 m, người ta phải đứng cách lưới từ 1,4 cho đến 11,9 mét

khi một quả bóng được đá lên , nó sẽ đạt tới độ cao nào đó rồi rơi xuống . Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth , trong đó t là hời gian ( tính bằng giây ) , kể từ khi quả bóng được đá lên ; h là độ cao ( tính bằng mét ) của quả bóng . Gỉa thiết rằng quả bóng được đá lên với độ cao 1,2 m . Sau đó một giây , nó đạt độ...
Đọc tiếp

khi một quả bóng được đá lên , nó sẽ đạt tới độ cao nào đó rồi rơi xuống . Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth , trong đó t là hời gian ( tính bằng giây ) , kể từ khi quả bóng được đá lên ; h là độ cao ( tính bằng mét ) của quả bóng . Gỉa thiết rằng quả bóng được đá lên với độ cao 1,2 m . Sau đó một giây , nó đạt độ cao 8,5 m và sau 2 giây sau khi đá lên , nó ở độ cao 6 m :  a) hãy tìm hàm số bậc 2 biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo quả bóng trong tình huống trên  ;  b) xác định độ cao lớn nhất của quả bóng ( tính chính xác đến hàng phần nghìn);  c) sau bao lâu thì quả bóng sẽ chạm đất kể từ khi đá lên ( tính chính xác đến hàng  phần trăm) ?

0
HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Theo giả thiết, khoảng thời gian bóng nằm ở độ cao 40 m là nghiệm của bất phương trình sau:

\(\begin{array}{l}h\left( t \right) > 40 \Leftrightarrow  - 4,9{t^2} + 30t + 2 > 40\\ \Leftrightarrow  - 4,9{t^2} + 30t - 38 > 0\end{array}\)

Xét tam thức \(f\left( t \right) =  - 4,9{t^2} + 30t - 38\) có \(\Delta  = 155,2 > 0\), có hai nghiệm phân biệt là \({x_1} \simeq 1,8;{x_2} \simeq 4,3\) và có \(a =  - 4,9 < 0\)

Ta có bảng xét dấu như sau:

Từ đó cho thấy khoảng từ 1,8 s đến 4,3 s lag khoảng thời gian bóng cao so với mặt đất lớn hơn 40 m

Vậy quả bóng nằm ở độ cao trên 40 m trong thời gian 2,5 giây.

1 tháng 1 2020

Đáp án B

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Để quả bóng ở độ cao trên 5m so với mặt đất thì:

\(\begin{array}{l}h(t) > 5\\ \Rightarrow  - 4,9{t^2} + 20t + 1 > 5\\ \Rightarrow  - 4,9{t^2} + 20t - 4 > 0\end{array}\)

Đặt \(f(t) =  - 4,9{t^2} + 20t - 4\)có \(\Delta ' = b{'^2} - ac = {10^2} - ( - 4,9).( - 4) = 80,4 > 0\)nên \(f(t)\)có 2 nghiệm: \(\begin{array}{l}{t_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a} = \frac{{ - 10 + \sqrt {80,4} }}{{ - 4,9}} = \frac{{10 - \sqrt {80,4} }}{{4,9}}\\{t_2} = \frac{{ - b' - \sqrt {\Delta '} }}{a} = \frac{{ - 10 - \sqrt {80,4} }}{{ - 4,9}} = \frac{{10 + \sqrt {80,4} }}{{4,9}}\end{array}\)

Mặt khác \(a =  - 4,9 < 0\), do đó ta có bảng xét dấu sau

Do đó để \(h(t) > 5\)thì \(t \in \left( {\frac{{10 - \sqrt {80,4} }}{{4,9}};\frac{{10 + \sqrt {80,4} }}{{4,9}}} \right)\)

Vậy để quả bóng sẽ ở độ cao trên 5m so với mặt đất thì \(t \in \left( {\frac{{10 - \sqrt {80,4} }}{{4,9}};\frac{{10 + \sqrt {80,4} }}{{4,9}}} \right)\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Theo giả thiết ta có bất phương trình sau: \( - 4,9{t^2} + 10t + 1,6 > 7 \Leftrightarrow  - 4,9{t^2} + 10t - 5,4 > 0\)

Xét tam thức \(f\left( t \right) =  - 4,9{t^2} + 10t - 5,4\) có \(\Delta  =  - \frac{{146}}{{25}} < 0\) và \(a =  - 4,9 < 0\)

nên \(f\left( x \right)\) âm với mọi t, suy ra bât phương trình \( - 4,9{t^2} + 10t + 1,6 > 7\) vô nghiệm

vậy bóng không thể cao trên 7 m

b) Theo giả thiết ta có bất phương trình sau: \( - 4,9{t^2} + 10t + 1,6 > 5 \Leftrightarrow  - 4,9{t^2} + 10t - 3,4 > 0\)

Xét tam thức \(f\left( t \right) =  - 4,9{t^2} + 10t - 3,4\) có hai nghiệm phân biệt là \({t_1} \simeq 0,43;{t_2} \simeq 1,61\) và \(a =  - 4,9 < 0\)

nên \(f\left( t \right)\) dương khi nằm trong khoảng \(\left( {0,43;1,61} \right)\)

Vậy khi nằm trong khoảng \(\left( {0,43;1,61} \right)\)giây thì bóng ở độ cao trên 5 m

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Kết quả của đồng xu và xúc xắc xảy ra đồng thời nên kết quả xảy ra gồm 2 kết quả liên tiếp nhau

Kết quả 1: Kết quả của đồng xu, có 2 kết quả: Sấp và ngửa

Kết quả 2: Kết quả của xúc xắc, có 6 kết quả: mỗi kết quả của mỗi mặt con xúc xắc

Áp dụng quy tắc nhân, ta có số kết quả có thẻ xuất hiện khi gieo đồng thời một đồng xu và một con xúc xắc là:

                             \(2.6 = 12\)

Vậy có 12 kết quả có thể xáy ra

b) 

17 tháng 5 2017

a) \(\overline{x}=36,5g;s_1-6,73\)

\(M_e=35g;M_0=35g\)

b) Ta chọn số trung bình \(\overline{x}=36,5g\) để làm giá trị đại diện cho các số liệu thống kê đã cho về quy mô và độ lớn

c) Rổ trứng thứ nhất và rổ trứng thứ hai có cùng đơn vị đo và \(\overline{x}_1=\overline{x}_2=36,5g;s_1=6,73g< 10g=s_2\). Suy ra trứng gà ở ổ thứ nhất đồng đều hơn.