Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(2^2+4^2+6^2+...+20^2\)
S =\(2^2\left(1^2+2^2+3^2+...+10^2\right)\)
S =\(4.385=1540\)
S = 22 + 42 + 62 + ... + 202
S = 22 ( 12 + 22 + 32 + ... + 102 )
Vì 12 + 22 + 32 + ... + 102 = 385
=> S = 22 . 385
S = 4 . 385
S = 1540
Vậy S = 1540
Vì 2^2=2^2.1^2,4^2=2^2.2^2,....20^2=2^2.10^2
Suy ra S=2^2.(1^2+2^2+...+10^2)
Mà theo bài ra,phần dấu trong ngoặc bằng 385
Suy ra S=2^2.385=4.385=1540
Vậy S có giá trị bằng 1540
S = 22.12+22.22+...+22+102
S = 22.(12+22+...+102)
S = 4.385
S = 1540
Vì 12+22+32+...+102 = 385
Mà S = 22+42+62+...+202
= 22.(12+22+32+...+102) = 4.385 = 1540
\(\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}.\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}.\)
\(=\frac{3-1}{3\left(3-1\right)}\)
\(=\frac{2}{6}=\frac{1}{3}\)
Study well
bài 1 :
a, A = 3|2x - 1| - 5 = 0
có 3|2x - 1| > 0
=> A > -5
xét A = -5 khi
|2x - 1| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
vậy Min A = -5 khi x = 1/2
b, c, d, làm tương tự
Bài 1:
\(a)A=3|2x-1|-5\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow3|2x-1|\ge0\) \(\forall x\)
\(\Rightarrow3|2x-1|-5\ge-5\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-5\Leftrightarrow x=\frac{1}{2}\)
\(b)x^2+3|y-2|-1\)
Vì \(\hept{\begin{cases}x^2\ge0\forall x\\3|y-2|\ge0\forall y\end{cases}}\)
\(\Rightarrow x^2+3|y-2|-1\ge-1\) \(\forall x,y\)
Dấu '=' xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy \(Min_B=-1\Leftrightarrow x=0,y=2\)
\(c)\left(2x^2+1\right)^4-3\)
Vì \(\left(2x^2+1\right)^4\ge0\)\(\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x^2+1=0\)
\(\Leftrightarrow2x^2=-1\)
\(\Leftrightarrow x^2=-\frac{1}{2}\left(voli\right)\)
Vậy không tìm được gt x
\(d)D=|x-\frac{1}{2}|+\left(y+2\right)^2+11\)
Vì \(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow|x-\frac{1}{2}|+\left(y+2\right)^2+11\ge11\) \(\forall x,y\)
Dấu '=' xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)
Vậy \(Min_D=11\Leftrightarrow x=\frac{1}{2},y=-2\)
Bài 2:
\(a)A=10-5|x-2|\)
Vì \(|x-2|\ge0\)\(\forall x\)
\(\Rightarrow5|x-2|\ge0\)\(\forall x\)
\(\Rightarrow\)\(10-5|x-2|\le10\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(Max_A=10\Leftrightarrow x=2\)
\(b)B=5-|2x-1|^2\)
Vì \(|2x-1|^2\ge0\)\(\forall x\)
\(\Rightarrow5-|2x-1|^2\le5\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=5\Leftrightarrow x=\frac{1}{2}\)
\(c)C=\frac{1}{|x-2|+3}\)
Vì \(|x-2|\ge0\)\(\forall x\)
\(\Rightarrow|x-2|+3\ge3\) \(\forall x\)
\(\Rightarrow\frac{1}{|x-2|+3}\le\frac{1}{3}\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(Max_C=\frac{1}{3}\Leftrightarrow x=2\)
nếu x - 5/6 > 0 => |x - 5/6 | = x - 5/6
=> x- 5/6 = 2x + 1
=> -1 - 5/6 = 2x - x
=> x = - 11/6 ( loại ) vì x-5/6<0
nếu x - 5/6 < 0 => | x - 5/6 | = 5/6 - x
=> 5/6 - x = 2 x + 1
=> 5/6 - 1 = 2x + x
=> -1/6 = 3x
=> x = -1/18 ( t/m)
vậy x = -1/18
=1^2.2^2+2^2.2^2+2^2.3^2+...+2^2.10^2
=2^2.(1^2+2^2+3^2+4^2+...+10^2)
=2^2.385
tự tính nhé
Click vào câu hỏi tương không tự nhé bạn
S = 2^2 + 4^2 + 6^2 + ... +20^2
= 2^2 . 1 + 2^2 . 2^2 + 2^2 . 3^2 + .. +2^2 . 10^2
= 2^2 ( 1 + 2^2 + 3^2 + .. +10^2)
= 4 . 385
= 1540
jgorjvihsjfjf