Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=100^2+200^2+300^2+...+1000^2\)
\(=100^2\cdot\left(1+2^2+3^2+...+10^2\right)\)
\(=100^2\cdot385=3850000\)
P = 32 + 62 + 92 + ... + 302
P = 32 . (12 + 22 + 32 + ... + 102)
P = 9 . 385
P = 3465
a) C = 106 + 57
C = 26 . 56 + 57
C = 56 . (26 + 5)
C = 56 . (64 + 5)
C = 56 . 69 chia hết cho 69
b) 310 . 199 - 39 . 500
= 39 . (3.199 - 500)
= 39 . (597 - 500)
= 39 . 97 chia hết cho 97
Ta có : P = 32 + 62 + 92 + .... + 302
= 32(12 + 22 + 32 + .... + 102)
= 9.385
= 3465
Vậy P = 3465
P = 32 + 62 + 92 + ... + 302
= ( 1.3 )2 + ( 2.3 )2 + ( 3.3 )2 + ... + ( 10.3 )2
= 12.32 + 22.32 + 32.32 + ... + 102.32
= 32( 12 + 22 + 32 + ... + 102 )
= 9.385 = 3465
THEO ĐỀ BÀI TA CÓ
1^2+2^2+3^2+...+10^2=385
MÀ 2^2+4^2+....+20^2=2(1^2+2^2+....+10^2)=2.385=770
VẬY 2^2+2^4+....+20^2=770
S = 2^2 + 4^2+6^2+.....+20^2
= ( 1.2 ) ^2 + ( 2.2)^2 +.....+ (2.10 ) ^2
= 2^2( 1^2 + 2^2 +.....+ 10^2 )
=2^2 . 385
= 4 . 385 = 1540
a,\(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2\)
\(=\left(\dfrac{13}{14}\right)^2\)
\(=\dfrac{169}{196}\)
b,\(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)
\(=\left(\dfrac{-1}{12}\right)^2\)
\(=\dfrac{1}{144}\)
c,\(\dfrac{5^4.20^4}{25^5.4^5}\)
\(=\dfrac{100^4}{100^5}\)
\(=\dfrac{1}{100}\)
d,\(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4\)
\(=\left(\dfrac{-10}{3}\right)^4.\left(\dfrac{-6}{5}\right)^4.\left(\dfrac{-10}{3}\right)\)
\(=\left(\dfrac{\left(-10\right)}{3}.\dfrac{\left(-6\right)}{5}\right)^4.\left(\dfrac{-10}{3}\right)\)
\(=4^4.\left(\dfrac{-10}{3}\right)\)
\(=256.\left(\dfrac{-10}{3}\right)\)
\(=\dfrac{-2560}{3}\)
\(\frac{4^{20}}{6^{20}}-\frac{2^{20}}{3^{20}}+\frac{6^{20}}{9^{20}}=\left(\frac{2}{3}\right)^{20}-\left(\frac{2}{3}\right)^{20}+\left(\frac{2}{3}\right)^{20}=\left(\frac{2}{3}\right)^{20}\)
\(S=2^2+4^2+...+20^2\)
\(=1^2.2^2+2^2.2^2+...+2^2.10^2\)
\(=\left(1^2+2^2+...+10^2\right).2^2\)
\(=385.4=1540\)
Vậy S = 1540
Giải:
Đặt \(A=1^2+2^2+...+10^2=385\)
\(\Rightarrow A.2^2=1^2.2^2+2^2.2^2+...+10^2.2^2=385.2^2\)
\(\Rightarrow A.2^2=\left(1.2\right)^2+\left(2.2\right)^2+...+\left(10.2\right)^2=385.2^2\)
\(\Rightarrow A.2^2=\left(2\right)^2+\left(4\right)^2+...+\left(20\right)^2=385.2^2\)
\(\Rightarrow A.2^2=S=385.2^2\)
\(\Rightarrow S=385.4\)
\(\Rightarrow S=1540\)