K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/72 + 1/90

<=> 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + ... + 1/8*9 + 1/9*10

<=> 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/8 - 1/9 + 1/9 - 1/10

<=> 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1 - 1/10

<=> 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 9/10 < 1

Vậy 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1

23 tháng 7 2017

Sửa lại đề : Chứng minh \(A=\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+....+\frac{1}{73}+\frac{1}{91}< 1\)

Ta có :

\(\frac{1}{3}=\frac{1}{1.2+1}< \frac{1}{1.2}\)

\(\frac{1}{7}=\frac{1}{2.3+1}< \frac{1}{2.3}\)

\(\frac{1}{13}=\frac{1}{3.4+1}< \frac{1}{3.4}\)

\(.....\)

\(\frac{1}{91}=\frac{1}{9.10+1}< \frac{1}{9.10}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}< 1\)(đpcm)

21 tháng 7 2017

a)   \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)

\(=\frac{1}{5}\)

b)   \(\left(1-\frac{3}{4}\right).\left(1-\frac{3}{7}\right).\left(1-\frac{3}{10}\right)........\left(1-\frac{3}{97}\right).\left(1-\frac{3}{100}\right)\)

\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.......\frac{94}{97}.\frac{97}{100}\)

\(=\frac{1}{100}\)

14 tháng 3 2017

mai tớ cho bài này nhé quen bài này ở lớp zùi

26 tháng 2 2018

A,-3/-7+5/19+-4/7

=(-3/-7+-4/7)+5/19

=-1/7+5/19=16/133

B,-13/24+-5/24+7/21

=-3/4+7/21=-5/12

C,-5/13+(-8/13+1)

=(-5/13+-8/13)+1

=-1+1=0

D,2/3+(3/8+-2/3)

=(2/3+-2/3)+3/8

=0+3/8=3/8

E,(-3/4+5/8)+-1/8

=-1/8+1/8=0

2 tháng 12 2019

a 24

b -3

c 161

d -1 

đúng ko bn

kb

B1

a) 28-{-13-[-11+(-12+5)]}=28-{-13-[-11+(-7)]}=28-{-13-[-18]}=28-5=23

b)-39-{-46+[-11-(-21)]}=-39-{-46+10}=-39-(-36)=-3

c)73+{-49-[-73-(72-8)]}=73+{-49-[-73-64]}=73+{-49-[-137]}=73+88=161

d)-86-{-97+[-11-(-28+5)]}=-86-{-97+[-11-(-23)]}=-86-{-97+12}=-86-{-85}=-1

29 tháng 7 2017

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )

25 tháng 11 2023

a: \(2x+5⋮x+1\)

=>\(2x+2+3⋮x+1\)

=>\(3⋮x+1\)

=>\(x+1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{0;-2;2;-4\right\}\)

b: \(5x+9⋮x+2\)

=>\(5x+10-1⋮x+2\)

=>\(-1⋮x+2\)

=>\(x+2\in\left\{1;-1\right\}\)

=>\(x\in\left\{-1;-3\right\}\)

c: \(2x+11⋮x+3\)

=>\(2x+6+5⋮x+3\)

=>\(5⋮x+3\)

=>\(x+3\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{-2;-4;2;-8\right\}\)

d: \(4x+9⋮2x+1\)

=>\(4x+2+7⋮2x+1\)

=>\(7⋮2x+1\)

=>\(2x+1\in\left\{1;-1;7;-7\right\}\)

=>\(2x\in\left\{0;-2;6;-8\right\}\)

=>\(x\in\left\{0;-1;3;-4\right\}\)

e: \(6x+7⋮3x+1\)

=>\(6x+2+5⋮3x+1\)

=>\(5⋮3x+1\)

=>\(3x+1\in\left\{1;-1;5;-5\right\}\)

=>\(3x\in\left\{0;-2;4;-6\right\}\)

=>\(x\in\left\{0;-\dfrac{2}{3};\dfrac{4}{3};-2\right\}\)

g: \(10x+13⋮5x+1\)

=>\(10x+2+11⋮5x+1\)

=>\(11⋮5x+1\)

=>\(5x+1\in\left\{1;-1;11;-11\right\}\)

=>\(5x\in\left\{0;-2;10;-12\right\}\)

=>\(x\in\left\{0;-\dfrac{2}{5};2;-\dfrac{12}{5}\right\}\)

25 tháng 11 2023

dễ ha

8 tháng 4 2023

đặt A=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}\)

        = \(\dfrac{1}{5}+(\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41})+(\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113})\)

=> A< \(\dfrac{1}{5}+(\dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12})+(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60})\)

     A<\(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)=\(\dfrac{1}{2}\)

vậy A<\(\dfrac{1}{2}\),<2=> A<2 (đpcm)