K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

ĐKXĐ : \(x\ne4;x\ne-4\)

\(Đkxđ:\\ \Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\\ \Rightarrow x\ne\pm4\)

I.trắc nghiệm câu 1: phương trình nào sau đây là phương trình bậc nhất một ẩn:A. x + y = 0     B. \(\dfrac{4}{x}+3\)C. 5 - 4x = 0    C.x2 - 4 = 0câu 2: điều kiện xác định của phương trình \(\dfrac{x+3}{x^2+9}=1\) là:A. x ≠ 3     B. x ≠ -3C. x ≠ 9     D. x ≠ 3 và x ≠ -3câu 3: x = 4 là nghiệm của phương trình nào trong các phương trình sau:A. 2x + 4 = 6   B. 2x + 1 = 5 C. x - 4 = 0     D. x + 4 = 0câu 4: cho ΔABC kẻ đường thẳng MN // BC (\(M\in AB,N\in...
Đọc tiếp

I.trắc nghiệm 

câu 1: phương trình nào sau đây là phương trình bậc nhất một ẩn:

A. x + y = 0     B. \(\dfrac{4}{x}+3\)

C. 5 - 4x = 0    C.x2 - 4 = 0

câu 2: điều kiện xác định của phương trình \(\dfrac{x+3}{x^2+9}=1\) là:

A. x ≠ 3     B. x ≠ -3

C. x ≠ 9     D. x ≠ 3 và x ≠ -3

câu 3: x = 4 là nghiệm của phương trình nào trong các phương trình sau:

A. 2x + 4 = 6   B. 2x + 1 = 5 

C. x - 4 = 0     D. x + 4 = 0

câu 4: cho ΔABC kẻ đường thẳng MN // BC (\(M\in AB,N\in AC\)). Tìm khẳng định đúng:

A. \(\dfrac{AM}{AB}=\dfrac{AN}{NC}\)       B.\(\)\(\dfrac{AM}{MB}=\dfrac{MN}{BC}\)

C. \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\)      D.\(\dfrac{AM}{AN}=\dfrac{AC}{AB}\)

câu 5: ΔABC đường phân giác BD. Khẳng định đúng:

A. \(\dfrac{DA}{DC}=\dfrac{BC}{BA}\)       B. \(\dfrac{CD}{CA}=\dfrac{BC}{BA}\)

C. \(\dfrac{BA}{DA}=\dfrac{BC}{DC}\)      D. \(\dfrac{BD}{AD}=\dfrac{BD}{DC}\)

câu 6: tập nghiệm của phương trình (x2 + 1)(x - 3) = 0 là:

A. S = {3}          B. S = {-1;1;3} 

C. S = {-1;3}      D. S = \(\varnothing\)

câu 7: phương trình 4x + k = 6 - 3x nhận x = 1 là một nghiệm, khi đó giá trị của k là:

A. k = 1      B. k = 6

C. k = -1     D.k = 7

câu 8: nếu ΔABC và ΔDEF có \(\dfrac{AB}{ED}=\dfrac{BC}{FE}=\dfrac{CA}{DF}\) thì:

A. ΔABC đồng dạng với ΔEDF    B.  ΔABC đồng dạng với ΔDEF

C.  ΔABC đồng dạng với ΔFDE   C.  ΔABC đồng dạng với ΔEDF

câu 9: một hình thoi có độ dài đường chéo lần lượt là 8cm,6cm thì diện tích hình thoi bằng:

A. 24cm2      B.48cm2

C.14cm2      C.28cm2

câu 10: giá trị của m để phương trình (1 - m)x + 3mx + 5 = 0 có nghiệm duy nhất là:

A. m ≠ -2     B. m ≠ -1

C. m ≠ \(\dfrac{1}{2}\)     D. m ≠ \(-\dfrac{1}{2}\)

câu 11: cho ΔABC ∼ ΔMNP theo tỉ số đồng dạng k thì tỉ số \(\dfrac{AB+BC+CA}{MN+NP+MP}\) là:

A. 3k      B. k2      C. k       D. \(\dfrac{1}{3}k\)

câu 12: nghiệm của phương trình \(\dfrac{X^2-25}{X+5}=0\) là:

A. x = 5     B. X = -5       C. x = \(\pm5\)   D. vô nghiệm

II. tự luận:

câu 1: giải các phương trình:

a) 2x + 3 = 7x - 7                     

b) \(\dfrac{x}{2}+\dfrac{x-1}{3}=\dfrac{5}{2}\)

c) \(\dfrac{x}{x+2}+\dfrac{x-1}{x-2}=\dfrac{2x^2+x}{x^2-4}\)

câu 2: một người đi xe máy từ trung tâm thành phố Nha Trang đến sân bay Cam Ranh với vận tốc 36km/h. Khi về từ sân bay Cam Ranh đến trung tâm thành phố Nha Trang với vận tốc 40km/h, vì thế thời gian về ít hơn thời gian đi là 6 phút. Tính quãng đường từ trung tâm thành phố Nha Trang đến sân bay Cam Ranh?

câu 3: cho hình vẽ sau có DE // BC

E x D A 2cm B C 4cm

a) tính độ dài đoạn DE

b) cho tam giác ABC có AB= 2cm, AC = 3cm, BC= 4cm, có đường phân giác AD. Tính dài của BD và CD

1
21 tháng 1 2022

a) \(\dfrac{x+1}{4}-\dfrac{5+2x}{8}=\dfrac{3-4x}{2}\)

\(\dfrac{2\left(x+1\right)}{8}-\dfrac{5+2x}{8}=\dfrac{4\left(3-4x\right)}{8}\) 

⇔ 2x + 2 - 5 - 2x = 12 -16x

⇔ 16x = 15 

⇔ x = 15/16

b) \(\dfrac{4-3x}{5}-\dfrac{4-x}{10}=\dfrac{x+2}{2}\)

\(\dfrac{2\left(4-3x\right)}{10}-\dfrac{4-x}{10}=\dfrac{5\left(x+2\right)}{10}\)

⇔ 8 - 6x - 4 + x = 5x + 10

⇔ 10x = -6

⇔ x = -6/10

21 tháng 1 2022

Câu 1:

x + 1/4 - 5 + 2x/8 = 3 - 4x/2

<=> 2x + 2/8 - 5 + 2x/8 = 12 - 16x/8

<=> 2x + 2 - 5 - 2x = 12 - 16x

<=> -3 = 12 - 16x <=> 15 = 16x <=> x = 15/16

Câu 2:

4 - 3x/5 - 4 - x/10 = x + 2/2

<=> 8 - 6x/10 - 4 - x/10 = 5x + 10/10

<=> 8 - 6x - 4 + x = 5x + 10

<=> 4 - 5x = 5x + 10

<=> 4 = 10x + 10 <=> 10x = -6 <=> x = -3/5

25 tháng 2 2022

ĐKXĐ: ` x ne 1 ; x ne 4`

`(2x+1)/(x^2-5x+4) + 5/(x-1) = 2/(x-4)`

`<=> (2x+1)/[(x-1)(x-4)] + [5(x-4)]/[(x-1)(x-4)] = [2(x-1)]/[(x-1)(x-4)]`

`=> 2x+1 + 5x -20 = 2x-2`

`<=> 5x = 17`

`<=> x= 17/5`(thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là `S={ 17/5}`

25 tháng 2 2022

undefined

19 tháng 8 2021

undefined

19 tháng 8 2021

c. Đk :x khác 2 và -2

d. đk :x khác 1 và -2

 

18 tháng 3 2021

1,\(3x-1=0\Leftrightarrow3x=-1\Leftrightarrow x=-\dfrac{1}{3}\)

2,\(2-x=3x+1\Leftrightarrow2-1=3x+x\rightarrow1=4x\Rightarrow x=-\dfrac{1}{4}\)

18 tháng 3 2021

3,\(2\left(x-2\right)-1=5x\Leftrightarrow2x-4-1=5x\Leftrightarrow2x-5x=4+1\Rightarrow3x=5\Rightarrow x=\dfrac{5}{3}\)

4,\(\dfrac{x}{3}-\dfrac{x}{5}=4\Leftrightarrow\dfrac{5x}{15}-\dfrac{3x}{15}=\dfrac{60}{15}\Rightarrow5x-3x=60\Rightarrow2x=60\Rightarrow x=\dfrac{60}{2}=30\)

Chọn A

17 tháng 1 2023

\(1,\left(dk:x\ne0,-1,4\right)\)

\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)

\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)

\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)

\(\Leftrightarrow-x=-44\)

\(\Leftrightarrow x=44\left(tm\right)\)

\(2,\left(đk:x\ne4\right)\)

\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)

\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)

\(\Leftrightarrow28-12-6x-9+5x-20=0\)

\(\Leftrightarrow-x=13\)

\(\Leftrightarrow x=-13\left(tm\right)\)

17 tháng 1 2023

bn ơi ktra lại câu 2 giúp mk đc ko 

a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)

\(\Leftrightarrow6x+2-20+8x>8x-6-6\)

\(\Leftrightarrow14x-18-8x+12>0\)

\(\Leftrightarrow6x-6>0\)

\(\Leftrightarrow6x>6\)

hay x>1

Vậy: S={x|x>1}

b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)

\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)

\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)

\(\Leftrightarrow-1< 0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}