K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Viết ra TV đi r hỏi!

4 tháng 7 2017

\(^{n^{ }2}\)+n+1589

=( \(^{n^{ }2}\)+n+\(\dfrac{1}{4}\))+\(\dfrac{6355}{4}\)

=(n+\(\dfrac{1}{2}\))^2+\(\dfrac{6355}{4}\)

Đặt n+\(\dfrac{1}{2}\)= a => \(a^2\)+\(\dfrac{6355}{4}\)=\(b^2\)

Tự giải a sau đó suy ra n=a -\(\dfrac{1}{2}\)

3 tháng 7 2017

Tổng của tất cả các số tự nhiên có thể n sao cho :n2+n+1589 là một hình vuông hoàn hảo ?

là đề bài cho

18 tháng 3 2017

Dịch: Tìm giá trị của k nếu :\(x^3+kx^2+\left(4-k\right)x-35⋮\left(x-7\right)\)

=>x-7=0=>x=7 => Là nghiệm của phương trình .

Thế x=7 vào biểu thức , ta có :

\(7^3+k.7^2+\left(4-k\right).7-35\)

=\(343+49k+28-7k-35=>42k=-336=>k=-8\)

Vậy k=-8

Bài thi số 3 19:25 Câu 1: A man drove a car from A to B at speed 60km/h. After arriving B, he took a rest for 30 minutes then turned back to A at speed 40km/h. Known that he started from A at 7:00 am and he reached A again at 3:15pm on the same day. The distance between A and B is km. Câu 2: The minimum of the expression is Câu 3: Given that is a positive integer such that and are perfect squares. The sum of such integers is Câu 4: Given two...
Đọc tiếp

Bài thi số 3

19:25
Câu 1:
A man drove a car from A to B at speed 60km/h. After arriving B, he took a rest for 30 minutes then turned back to A at speed 40km/h. Known that he started from A at 7:00 am and he reached A again at 3:15pm on the same day. The distance between A and B is km.
Câu 2:
The minimum of the expression is
Câu 3:
Given that is a positive integer such that and are perfect squares.
The sum of such integers is
Câu 4:
Given two triangles and . Known that , and .
If then
Câu 5:
How many real numbers are there such that ?
Answer: There are numbers .
Câu 6:
The operation on two numbers produces a number equal to their sum minus 2.The value of is
Câu 7:
ABC is a triangle. AM is the bisector of angle CAB. Given that AM = 4cm, AB = 6m and AC = 12cm.Then the measurement of angle BAC is degrees.
Câu 8:
In the equation above, where is a constant.The greatest possible value of such that the equation has at least one solution is
Câu 9:
and are positive integers such that , where is a prime number.
The number of pairs is
Câu 10:
Given that .
Calculate:
=
(Input the answer as a decimal in its simplest form)
Nộp bài
7
10 tháng 4 2017

câu 7 mk bấm nhầm đáp án là 120

qua B kẻ đường thẳng song song với AM cắt AC ở N.

vì AM là phân giác góc BAC nên có :

\(\dfrac{AC}{AB}=\dfrac{CM}{BM}=\dfrac{12}{6}=2\) suy ra \(\dfrac{CM}{BC}=\dfrac{CM}{CM+BM}=\dfrac{12}{12+6}=\dfrac{2}{3}\)

vì AM song song với BN nên có :

1,\(\dfrac{CA}{AN}=\dfrac{CM}{BM}=\dfrac{12}{AN}=2\) suy ra AN=6

2,\(\dfrac{AM}{BN}=\dfrac{CM}{BC}=\dfrac{2}{3}=\dfrac{4}{BN}\)suy ra BN=6

vì AB=6 nên tam giác ABN đều

suy ra \(\widehat{NAB}\)=\(60^0\)

\(\widehat{NAB}+\widehat{BAC}=\)\(180^0\)

nên \(\widehat{BAC}=\)\(120^0\)

7 tháng 4 2017

bài này bữa mình thi có 50đ à hehe

17 tháng 8 2016

Ta có

\(\left(x+y\right)^2=x^2+y^2+2xy\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\) (1) 

\(\left(x-y\right)^2=x^2+y^2-2xy\)

\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy\) (2)

Cộng (1) và (2)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2-2xy+\left(x-y\right)^2+2xy\)

\(\Rightarrow2\left(x^2+y^2\right)=\left(x+y\right)^2+\left(x-y\right)^2\)

\(\Rightarrow2\left(x^2+y^2\right)=2^2+\left(\frac{3\sqrt{2}}{2}\right)^2\)

\(\Rightarrow2\left(x^2+y^2\right)=4+4,5\)

\(\Rightarrow2\left(x^2+y^2\right)=8,5\)

\(\Rightarrow x^2+y^2=4,25\)

Vây \(x^2+y^2=4,25\)

17 tháng 8 2016

Ta có : \(\begin{cases}x+y=2\\x-y=\frac{3\sqrt{2}}{2}\end{cases}\)

Xét : \(\left(x+y\right)^2=x^2+y^2+2xy=4\left(1\right)\)

\(\left(x-y\right)^2=x^2-2xy+y^2=\frac{9}{2}\left(2\right)\)

Cộng (1) và (2) được : \(2\left(x^2+y^2\right)=4+\frac{9}{2}\Leftrightarrow x^2+y^2=\frac{17}{4}\)