K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 12 2021

Bài 1: Tính hợp lý (nếu có thể)

a) 5.(-8).(-2).(-3)\(=\left(-2.5\right).\left(\left(-3\right).\left(-8\right)\right)=-10.24=-240\)

c) 147.333+233.(-147)\(=147\left(333-233\right)=147.100=14700\)

b) (-125).8.(-2).5.19\(=\left(-125.8\right).\left(-2.5\right).19=-1000.\left(-10\right).19=190\text{ }000\)

d) (-115).27+33.(-115)\(=-115.\left(27+33\right)=-115.60=-6900\)

Bài 2: Tìm số nguyên x, biết: 

a) 2x+19=15\(\Leftrightarrow2x=15-19=-4\Leftrightarrow x=-2\)

c) 24-(x-3)^3=-3\(\Leftrightarrow\left(x-3\right)^3=27=3^3\Leftrightarrow x-3=3\Leftrightarrow x=6\)

30 tháng 10 2016

a/ \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\\3+2^{x+1}=24-\left[16-\left(4-1\right)\right]\)

\(3+2^{x+1}=24-\left(16-3\right)\\ 3+2^{x-1}=24-13\\ 3+2^{x-1}=11\\ 2^{x+1}=11-3\\ 2^{x-1}=8\)

\(2^{x-1}=2^3\\ \Rightarrow x-1=3\\x=3+1\\ x=4\)

 

30 tháng 10 2016

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=205550\)

\(\left(x.100\right)+\left(1+2+3+....+100\right)=205550\)

Ta tính tổng \(1+2+3+...+100\\ \) trước

Số các số hạng: \(\left[\left(100-1\right):1+1\right]=100\)

Tổng :\(\left[\left(100+1\right).100:2\right]=5050\)

Thay số vào ta có được:

\(\left(x.100\right)+5050=205550\\ \\ x.100=205550-5050\\ \\x.100=20500\\ \\x=20500:100\\ \\\Rightarrow x=2005\)

a) \(15+2\left|x\right|=-3\\ \\ < =>2\left|x\right|=15-\left(-3\right)\\ < =>2\left|x\right|=18\\ =>\left|x\right|=\frac{18}{2}=9\\ =>x=9hoặcx=-9\)

b) \(\left|x-2\right|=7\\ < =>x-2=7hoặcx-2=-7\\ =>x=9hoặcx=-5\)

c) \(100-4.x^2=224\\ < =>4.x^2=100-224=-124\\ < =>x^2=-\frac{124}{4}=-31\\ Mà:x^2\ge0\\ =>xkhôngcógiátrịnàothoảmãn\)

d)\(2x-\frac{9}{240}=\frac{39}{80}\\ < =>2x-\frac{3}{80}=\frac{39}{80}\\ =>2x=\frac{39}{80}+\frac{3}{80}=\frac{21}{40}\\ =>x=\frac{\frac{21}{40}}{2}=\frac{21}{80}\)

9 tháng 2 2017

\(15+2\left|x\right|=-3\)

\(\Rightarrow2\left|x\right|=15+3\)

\(\Rightarrow2\left|x\right|=18\)

\(\Rightarrow\left|x\right|=\frac{18}{2}\)

\(\Rightarrow\left|x\right|=9\)

\(\Rightarrow\left[\begin{matrix}x=9\\x=-9\end{matrix}\right.\)

Vậy, x = 9 hoặc x = -9.

27 tháng 4 2017

\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\\ =\dfrac{200-2-\left(1+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{100}\right)}{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+...+\left(1-\dfrac{99}{100}\right)}\\ =\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}...+\dfrac{2}{100}\right)}{\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot99-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}=2\left(đpcm\right)\)

NM
14 tháng 12 2021

a. ta có \(2019.\left(-2\right)< 0\)

b. \(\left(-2018\right).\left(-2019\right)>0\)

c. \(\left(-1\right).\left(-2\right)\left(-3\right)..\left(-2020\right)>0\)

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)+\left(1+\frac{1}{2}+...+\frac{1}{2^{10}}\right)\)

\(2S-S=S=2-\frac{1}{2^{10}}\)

18 tháng 8 2020

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(2S=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(2S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

\(S=2S-S\)

\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)

\(S=2-\frac{1}{2^{10}}\)

22 tháng 12 2016

Câu 1:

13=13 ; 12=3.4

=>ƯCLN(13;12)=1

22 tháng 12 2016

Câu 3

=100

23 tháng 8 2016

đề đoạn kia là 11 => 111 thì đúng hơn nhé

Ta có

\(B=\left(1+2+...+100\right)\left(1^2+2^2+....+100^2\right)\left(65.111-13.15.37\right)\)

( Nói thêm 1 chút nhé . Thường thường với các biểu thức dai và nếu thực hiện các phếp toán trong các ngoặc gần như là 0 thể thì bn phait chú ý tới cái vế sau cùng =)) . Thường là thế )

\(B=\left(1+2+...+100\right)\left(1^2+2^2+....+100^2\right)\left(65.111-13.3.5.37\right)\)

\(B=\left(1+2+...+100\right)\left(1^2+2^2+....+100^2\right)\left(65.111-3.37.5.13\right)\)

\(B=\left(1+2+...+100\right)\left(1^2+2^2+....+100^2\right)\left(65.111-111.65\right)\)

\(B=\left(1+2+...+100\right)\left(1^2+2^2+....+100^2\right)0\)

=> B=0

 

23 tháng 8 2016

đề sai rồi nhé!!! 

t sửa đề làm lại nè:

\(B=\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+100^2\right).\left(65.111-13.15.37\right)\)

Ta có:

\(65.111-13.15.37=65.111-\left(13.5\right).\left(3.37\right)\)

\(=65.111-65.111\)

\(=0\)

\(\Rightarrow B=\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+100^2\right).0\)

\(\Rightarrow B=0\)

Dấu chấm là dấu nhân nhé