Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, S = 2+22 + 23 + ....+ 260
a, chứng tỏ S chia hết cho 3
S = 2+22 + 23 + ....+ 260
S = (2+22 ) + (23 + 24 ) + ....+ (259 + 260)
S = 2(1+2 ) + 23(1+2 ) + ....+ 259(1+2)
S = 2.3 + 23 .3 + ....+ 259 .3
S = 3(2+23 + ...+259 ) \(⋮\) 3
=> đpcm
b, chứng tỏ S chia hết cho 7
S = 2+22 + 23 + ....+ 260
S = (2+22 + 23 ) + ....+ ( 258 + 259 + 260)
S = 2(1+2+22 ) + ....+ 258(1+2+22 )
S = 2.7 + ....+ 258 .7
S= 7(2+...+258)\(⋮\) 7
=> đpcm
Có: (4x + 19) - (2x + 5) = 3a - 3b
=> 3a - 3b = 2x + 14
(2x + 14) - (2x + 5) = 3a - 3b - 3b
=> 9 = 3a - 2.3b = 3b.(3a-b - 2)
=> 9 chia hết cho 3b; 9 chia hết cho 3a-b - 2
Mà 3a-b - 2 chia 3 dư 1 và 3a-b - 2 > 0 do a > b; a;b thuộc N
=> 3b = 9 = 32; 3a-b - 2 = 1
=> b=2; 3a-b = 3
=> b=2; a-b=1
=> b=2;a=3
Thay vào đề bài ta có:
4x + 19 = 33 = 27
=> 4x = 27 - 19 = 8
=> x = 8 : 4 = 2
Vậy x = 2; a = 3; b = 2
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{58}\right)\)
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+...+2^{57}\right)⋮5\)
a: =18x941+18x59
=18(941+59)
=18x1000=18000
b: \(=81:27-16:8=3-2=1\)
c: =30-40+25=-10+25=15
d: =17(85+15)-150=1700-150=1550
e: =-150-180-200=-530
f: =17+15+40=72
a)
4 . 25 – 12 . 25 + 170 : 10
= (4 . 25) – (12 . 25) + (170 : 10)
= 100 - 300 + 17
= -183
b)
(7 + 33 + 32) . 4 – 3
= (7 + 27 + 9) .4 – 3
= 43 . 4 – 3
= (43 . 4) – 3
= 45
c)
12 : {400 : [500 – (125 + 25 . 7)}
= 12 : {400 : [500 – (125 + 175)}
= 12 : (400: 200)
= 12 : 2
= 6
d)
168 + {[2.(24 + 32) - 2560] : 72}.
= 168 + [2 . (16 + 9) – 1] : 49
= 168 + 49: 49
= 168 + 1
= 167
a)
4 . 25 – 12 . 25 + 170 : 10
= (4 . 25) – (12 . 25) + (170 : 10)
= 100 - 300 + 17
= -183
b)
(7 + 33 + 32) . 4 – 3
= (7 + 27 + 9) .4 – 3
= 43 . 4 – 3
= (43 . 4) – 3
= 45
c)
12 : {400 : [500 – (125 + 25 . 7)}
= 12 : {400 : [500 – (125 + 175)}
= 12 : (400: 200)
= 12 : 2
= 6
d)
168 + {[2.(24 + 32) - 2560] : 72}.
= 168 + [2 . (16 + 9) – 1] : 49
= 168 + 49: 49
= 168 + 1
= 167
a) \(93+3\left(x-5\right)=3.5^2=75\\ =>3\left(x-5\right)=75-93=-18\\ =>x-5=\dfrac{-18}{3}=-6\\ =>x=-6+5=-1\)
b, \(\left(5x^3+2^2.11\right):3^2=5\\ < =>\left(5x^3+44\right):9=5\\ =>5x^3+44=5.9=45\\ =>5x^3=45-44=1\\ =>x^3=\dfrac{1}{5}\\ =>x=\sqrt[3]{\dfrac{1}{5}}\)
\(A=2+2^2+2^3+...+2^{61}+2^{62}+2^{63}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{61}+2^{62}+2^{63}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{61}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{61}.7\)
\(A=\left(2+2^4+...+2^{61}\right).7\Rightarrow A⋮7\)
Vậy ...
Ta có:
\(A=2+2^2+2^3+...+2^{63}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{61}+2^{62}+2^{63}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+...+2^{61}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+...+2^{61}.7\)
\(\Rightarrow A=\left(2+...+2^{61}\right).7⋮7\)
\(\Rightarrow A⋮7\)
\(\Rightarrowđpcm\)