K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

a.

f(x) + g(x)

= x^2 + 5x + 5 + x^2 - 4x + 3

= 2x^2 + x + 8

b.

Thay x = 1 vào f(x), ta có:

1^2 + 5 . 1 + 5

= 1 + 5 + 5

= 11

Vậy x = 1 không là nghiệm của f(x)

Thay x = 1 vào g(x), ta có:

1^2 - 4 . 1 + 3

= 1 - 4 + 3

= 0

Vậy x = 1 là nghiệm của g(x)

c.

f(x) = g(x)

x^2 + 5x + 5 = x^2 - 4x + 3

x^2 + 5x - x^2 + 4x = 3 - 5

9x = - 2

x = - 2/9

 

 

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

30 tháng 5 2018

a, \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)

\(=\left(x^3-2x^3+3x+1\right)-\left(x^3+x+1\right)+\left(2x^2-1\right)\)

\(=x^3-2x^3+3x+1-x^3-x-1+2x^2-1\)

\(=\left(x^3-2x^3-x^3\right)+2x^2+\left(3x-x\right)+\left(1-1-1\right)\)

\(=-2x^3+2x^2+2x-1\)

1 tháng 6 2018

Ở chỗ g(x) bn kiểm tra số sau dấu = là x hay là nhân nha, nếu là x thì bn viết thừa nha

1 tháng 6 2018

à mình viết thừa đó :) cảm ơn bạn đã nhắc

15 tháng 4 2019

a)f(x)+g(x)=10xmũ2-8x+ 14/3

b)f(x)-g(x)=10x mũ 2 +4x+16/3

nghiệm chưa tính ddcj nha

16 tháng 4 2019

a;\(f\left(x\right)+g\left(x\right)=\left(5x^2-2x+5\right)+\left(5x^2-6x-\frac{1}{3}\right)=25x^2-8x+\frac{1}{4}\)

b'\(f\left(x\right)-g\left(x\right)=\left(5x^2-2x+5\right)-\left(5x^2-6x-\frac{1}{3}\right)=4x+\frac{16}{3}\)

c;\(f\left(x\right)-g\left(x\right)=0\Leftrightarrow4x+\frac{16}{3}=0\)

                                         \(\Leftrightarrow4x=-\frac{16}{3}\)

                                           \(\Leftrightarrow x=-\frac{4}{3}\)

Vậy nghiệm của đa thức f(x)-g(x) là : x=-4/3

17 tháng 7 2018

\(A=\left|x+\frac{2}{3}\right|\)

Ta có: \(\left|x+\frac{2}{3}\right|\ge0\forall x\)

\(A=0\Leftrightarrow\left|x+\frac{2}{3}\right|=0\Leftrightarrow x=-\frac{2}{3}\)

Vậy \(A_{min}=0\Leftrightarrow x=-\frac{2}{3}\)

\(B=\left|x\right|+\frac{1}{2}\)

Ta có: \(\left|x\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|+\frac{1}{2}\ge\frac{1}{2}\forall x\)

\(B=\frac{1}{2}\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)

Vậy \(B_{min}=\frac{1}{2}\Leftrightarrow x=0\)

Câu c,d tương tự

P/S tất cả những bài trên chỉ tìm được min, ko tìm được max. 

17 tháng 7 2018

ma ban oi, cau e va f thi sao

31 tháng 5 2018

f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)

g(x)=\(x^5-7x^4+4x^3-3x-9\)

f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)

=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))

=\(-14x^4+2x^3+x^2+x\)

31 tháng 5 2018

a) Sắp xếp các đa thức theo lũy thừa giảm của biến :

\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)

b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)

=> h(x) = -14x4 + 2x3 + x2 +x