Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔABC vuông tại A có
\(AB=BC\cdot\cos60^0\)
\(\Leftrightarrow BC=\dfrac{a}{\dfrac{1}{2}}=2a\)
\(\Leftrightarrow AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\)
\(\widehat{C}=90^0-60^0=30^0\)
Kẻ PD và BE vuông góc AC
Định lý phân giác: \(\dfrac{AN}{NC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AN}{AN+NC}=\dfrac{AB}{AB+BC}\Rightarrow\dfrac{AN}{AC}=\dfrac{AB}{AB+BC}=\dfrac{c}{a+c}\)
Tương tự: \(\dfrac{AP}{AB}=\dfrac{b}{a+b}\)
Talet: \(\dfrac{PD}{BE}=\dfrac{AP}{AB}\)
\(\dfrac{S_{APN}}{S_{ABC}}=\dfrac{\dfrac{1}{2}PD.AN}{\dfrac{1}{2}BE.AC}=\dfrac{AP}{AB}.\dfrac{AN}{AC}=\dfrac{bc}{\left(a+b\right)\left(a+c\right)}\)
Tương tự: \(\dfrac{S_{BPM}}{S_{ABC}}=\dfrac{ac}{\left(a+b\right)\left(b+c\right)}\) ; \(\dfrac{S_{CMN}}{S_{ABC}}=\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\)
\(\Rightarrow\dfrac{S_{APN}+S_{BPM}+S_{CMN}}{S_{ABC}}=\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\)
\(\Rightarrow\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{S_{ABC}-\left(S_{APN}+S_{BPM}+S_{CMN}\right)}{S_{ABC}}=1-\left(\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\right)\)
\(=\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
2. Do ABC cân tại C \(\Rightarrow AC=BC=a\)
\(\dfrac{BC}{AB}=k\Rightarrow AB=\dfrac{BC}{k}=\dfrac{a}{k}\)
Do đó:
\(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2.a.a.\dfrac{a}{k}}{2a.\left(a+\dfrac{a}{k}\right)\left(a+\dfrac{a}{k}\right)}=\dfrac{k}{\left(k+1\right)^2}\)
Có ΔABC vuông ở A có AB = 1.875, AC = 2.5 nên dễ tính đc AH = 1.5.
ΔAHM vuông ở H, AH = 1.5, HM = √7/2 nên tính đc AM = 2
Có ΔABC vuông ở A có AB = 1.875, AC = 2.5 nên dễ tính đc AH = 1.5.
ΔAHM vuông ở H, AH = 1.5, HM = 7√2 nên tính đc AM = 2
Đặt BH = x (x > 0) => BC = (x + 6,4)
Có: AB2 = BH.BC => 36 = x(x + 6,4) => 36 = x2 + 6,4x => x2 + 6,4x - 36 = 0
=> (x + 10)(5x - 18) = 0 => x = -10 (loại) hoặc x = 18/5 (nhận)
=> BH = 18/5cm => BC = 18/5 + 6,4 = 10cm
Có: AC2 = HC.BC = 6,4 . 10 = 64 => AC = 8cm
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\Rightarrow AH=\sqrt{\frac{576}{25}}=\frac{24}{5}cm\)
Vậy BC = 10cm , BH = 18/5cm , AH = 24/5cm , AC = 8cm
sao không ai trả lời hộ à