K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2016

- Tìm A’ đối xứng với A qua Oy , B’ đối xứng với A qua Ox

- Nối A’B’ cắt Ox tại B , cắt Oy tại C . Đó chính là hai điểm cần tìm

- Chứng minh B,C là hai điểm duy nhất cần tìm .

Thật vậy : Do A’ đối xứng với A qua Oy , cho nên CA=CA’ (1) . Mặt khác : B’ đối xứng với A qua Ox cho nên ta có BA=BB’ (2) .

Gọi P là chu vi tam giác ABC - do từ (1) và (2) - thì P=CA+CB+BA =CA’+CB+BB’=A’B’ 

25 tháng 8 2016

qua O x lay D sao cho D diểm doi sung cua a qua O x lay E sao cho E ldiểm em doi sung cua a qua O y doan DE cat O x dâuau thdiểmem B ở do, DE cat O y dâuau thi C ở dó 
de dang Cdượcoc tam Giác ABC có chu vi nhnhấtat

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

22 tháng 2 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử điểm A đã dựng được . Gọi B là hình chiếu vuông góc của A trên Ox, khi đó AB = AC. Lấy điểm A' bất kì trên Oy, gọi B' là hình chiếu vuông góc của A' trên Ox, đường thẳng qua A' song song với AC cắt đường thẳng OC tại C'. Khi đó có thể coi tam giác ABC là ảnh của tam giác A'B'C' qua phép vị tự tâm O tỉ số  A C A ' C '  nên A'C' = A'B'.

Từ đó suy ra cách dựng:

- Lấy điểm A bất kì trên Oy, dựng B' là hình chiếu vuông góc của A lên Ox

- Lấy C' là một giao điểm của đường tròn tâm A' bán kính A'B' với đường thẳng OC.

- Đường thẳng qua C song song với A'C' cắt Oy tại A.

Dễ thấy A là điểm phải dựng.

 

Bài toán có hai nghiệm hình.

19 tháng 3 2019

Đáp án A

Lấy A’, A” lần lượt là điểm đối xứng với A qua Ox và Oy

Tacó:

AB  + AC + BC = BA’ + CA” + BC  ≥ A’A” Chu vi tam giác ABC:

 

Dấu bằng xảy ra khi A’,  A” , B , C thẳng hàng

14 tháng 4 2016

- Kẻ đường kính BB’ .Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định \(\overrightarrow{\Rightarrow AH}=\overrightarrow{B'C}\)

Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H . Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo \(\overrightarrow{v}=\overrightarrow{B'C}\)

- Cách xác định đường tròn (O’;R) . Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : \(\overrightarrow{OO'}=\overrightarrow{B'C}\). Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .

13 tháng 8 2016

Hàm số lượng giác, phương trình lượng giácHàm số lượng giác, phương trình lượng giác

13 tháng 8 2016

tam giác ABM vuông cân tại M=>GA=GB mà GA=GD

=>G là tâm đường tròn ngoại tiếp tam giác ABD

góc ABM=45 độ=>góc AGD=90 độ=>pt GD=>G

tham số A:  GA=GD=>A

cos GAB=3/  =>pt AB

14 tháng 4 2016

- Kẻ AA’ ( là đường kính của (O) ) suy ra BHCA’ là hình bình hành , cho nên BC đi qua trung điểm I của A’H .

- A’H’ song song với BC ( vì cùng vuông góc với AH )

- Từ đó suy ra BC là đường trung bình của tam giác AHH’ – Có nghĩa là BC đi qua trung điểm của HH’ . Mặt khác AH vuông góc với BC suy ra BC là trục đối xứng của HH’ , hay H và H’ đối xứng nhau qua BC.

14 tháng 4 2016

Gọi H là giao ba đường cao của tam giác ABC . Kéo dài AH cắt (O;R) tại H’ . Nối CH’

- Chứng minh IH=IH’ . Thật vậy

          Ta có : \(\widehat{A}=\widehat{BCH'}\) ( Góc nội tiếp chẵn cung BH’ ).(1)

Mặt khác : \(\begin{cases}CH\perp AB\\CI\perp AH'\end{cases}\)\(\Rightarrow\widehat{A}=\widehat{BCH}\) (2)

Từ (1) và (2) suy ra : \(\widehat{BCH}=\widehat{BCH'}\)

Chứng tỏ tam giác HCH’ là tam giác cân . Do BC vuông góc với HH’ , chứng tỏ BC là đường trung trực của HH’ . Hay H và H’ đối xứng nhau qua BC . Cho nên khi A chạy trên đường tròn (O;R) thì H’ cũng chạy trên (O;R) và H sẽ chạy trên đường tròn (O’;R) là ảnh của đường tròn (O;R) qua phép đối xứng trục BC

- Giới hạn quỹ tích : Khi A trùng với B và C thì tam giác ABC suy biến thành đường thẳng . Vì thế trên đường tròn (O’;R) bỏ đi 2 điểm là ảnh của B,C