ể đa thức có hai nghiệ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

11 tháng 4 2018

Thay x=-2 và x=2 vào ta được:

\(\hept{\begin{cases}8a+4b+2c+d=0\left(1\right)\\-8a+4b-2c+d=0\left(2\right)\end{cases}}\)

Trừ (1) cho (2) được: 16a+4c=0 <=> 4a+c=0 => c=-4a <=> \(\frac{c}{a}=-4\)

Cộng (1) với (2) ta được: 8b+2d=0 <=> d=-4b => \(\frac{d}{b}=-4\)

Đáp số: \(\frac{c}{a}=\frac{d}{b}=-4\)

6 tháng 5 2018

Ta có \(f\left(x\right)\)có nghiệm là -1

=> \(f\left(-1\right)=0\)

=> \(\left(-1\right)^3+\left(-1\right)^3a+\left(-1\right)b-2=0\)

=> \(-1-a-b-2=0\)

=> \(-3-a-b=0\)

=> \(-a-b=3\)

=> \(-\left(a-b\right)=3\)

=> \(a-b=-3\)

=> \(a=-3+b\)(1)

và f (x) cũng có nghiệm là 1

=> \(f\left(1\right)=0\)

=> \(1^3+a.1^3+b-2=0\)

=> \(1+a+b-2=0\)

=> \(-1+a+b=0\)

=> \(a+b=1\)(2)

Thế (1) vào (2), ta có:

\(-3+b+b=1\)

=> \(-3+2b=1\)

=> \(2b=1+3\)

=> \(2b=4\)

=> \(b=2\)

=> \(a=-3+2=-1\)

Bài 2: 

\(3x^2+5\ge5>0\forall x\)

nên f(x)>0 với mọi x