\(\sqrt{2x+3}+\sqrt{x+1}=3x+\sqrt{2x^2+5x+3}-16\) là........">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

để thiếu số 2 trước \(\sqrt{2x^2...}\)

5 tháng 4 2017

Đề bài sai ,đề bài đúng :

\(\sqrt{2x+3}\)+\(\sqrt{x+1}\)=3x+\(2\sqrt{2x^2+5x+3}\)-16

13 tháng 8 2016

câu 8L \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

ta thấy \(\sqrt{x}+1>=1\)

=> \(\left(\sqrt{x}+1\right)^2>=1\)

=> GTNN =1 khi x=0

bài 6: |x-1|=x+1

TH1: x-1=x+1<=> 0x=2      vô nghiệm

TH2: x-1=-1-x

<=> 2x=0<=> x=0

vậy tập nghiệm S={0}

câu 5: \(\sqrt{x^2+3}=\sqrt{4x}\) diều kiện x>=0

pt<=> \(x^2+3=4x\)

<=> x=3 hoặc x=1

vậy tập nghiệm S={1;3}

câu 2: \(\sqrt{x-2}\left(2\sqrt{x-2}-3\right)=2x-13\)

điều kiện x>=2

đặt \(\sqrt{x-2}=a\)>=0

=> pt có dạng a(2a-3)=4a2-9

<=> 2a2+3a-9=0

<=> a=-3 (loại) hoặc a=3/2

thya vào rồi giải: x-2=9/4

=> a=17/4 (thỏa )

các câu khác tương tự

 

13 tháng 8 2016

vòng mấy z

19 tháng 3 2017

Xét \(A^2=\left(\sqrt{x-1}+\sqrt{2x^2-5x+7}\right)^2\)

\(A^2=x-1+2x^2-5x+7+2\sqrt{\left(x-1\right)\left(2x^2-5x+7\right)}\)

\(A^2=2x^2-4x+6+2\sqrt{\left(x-1\right)\left(2x^2-5x+7\right)}\)

\(A^2=2\left(x-1\right)^2+4+2\sqrt{\left(x-1\right)\left(2x^2-5+7\right)}\)

\(A^2\ge4\Rightarrow A\ge2\)

18 tháng 10 2019

Căn bậc haiCăn bậc hai

ta có

14 tháng 8 2019

a) \(\sqrt{\frac{3x-2}{x^2-2x+4}}=\sqrt{\frac{3x-2}{\left(x-1\right)^2+3}}\)

Mà \(\left(x-1\right)^2+3>0\)nên bt xác định\(\Leftrightarrow3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)

14 tháng 8 2019

b)\(\sqrt{\frac{2x-3}{2x^2+1}}\)

Vì \(2x^2+1>0\)nên bt xác định\(\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)

1 tháng 8 2016

điều kiện: x thuộc(\(-\infty;-3\))\(\cup\left(-\frac{7}{5}:+\infty\right)\)

PT<=> 5x+7=16x+48

<=>x=-41/14 (k thỏa)

\=> PTVN

2 tháng 8 2016

đkxđ : \(\begin{cases}5x+7\ge0\\x+3>0\end{cases}\) \(\Leftrightarrow\)  \(\begin{cases}x\ge\frac{7}{5}\\x>-3\end{cases}\)

pt \(\Leftrightarrow\)  \(\frac{5x+7}{x+3}\) = 16

    \(\Leftrightarrow\)  5x+7= 16x+48

    \(\Leftrightarrow\)  x= \(\frac{-41}{11}\)  (L)

Vậy pt vô nghiệm

26 tháng 9 2016

1/ Điều kiện xác định \(x\ge0\)

\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)

\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)

Vậy pt vô nghiệm

2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)

\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)

\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)

Vậy pt vô nghiệm.

26 tháng 9 2016

1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

Đặt \(a=\sqrt{x}-1\) ta  đc:

\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)

\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)

=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))

 

12 tháng 5 2020

Ta có : \(\Delta=\left(-5\right)^2-4.4m=25-16m\)

Để pt có 2 nghiệm phân biệt \(< =>25-16m>0\)

\(< =>m< \frac{25}{16}\)

Theo hệ thức vi ét ta có : \(\hept{x_1+x_2=5}\)

Thay vào pt ta có : 

\(\sqrt{\left(4x_1+4x_2\right)+7x_1}+\sqrt{\left(4x_1+4x_2\right)+7x_2}=9\sqrt{3}\)

Binh phương 2 vế ta được 

\(5.4+7x_1+7x_2+5.4=243\)

\(< =>7.5+40=243< =>75=243\)

<=> sai đề :)) hoặc giải ngu xD