K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2021

1 diem

14 tháng 4 2016

-  Giả sử ta lấy điểm M trên (O;R). Theo giả thiết , thì M’ là ảnh của M qua phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\). Nhưng do M chạy trên (O;R) cho nên M’ chạy trên đường tròn ảnh của (O;R) qua phép tịnh tiến . Mặt khác M’ chạy trên (O’;R’) vì thế M’ là giao của đường tròn ảnh với đường tròn (O’;R’).

- Tương tự : Nếu lấy M’ thuộc đường tròn (O’;R’) thì ta tìm được N trên (O;R) là giao của (O;R) với đường tròn ảnh của (O’;R’) qua phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\)

- Số nghiệm hình bằng số các giao điểm của hai đường tròn ảnh với hai đường tròn đã cho . 

25 tháng 5 2016

Gọi (O) là đường tròn ngoại tiếp đa giác, do đa giác có số đỉnh là số chẳn nên đường nối một đỉnh tùy ý với tâm O sẽ đi qua một đỉnh khác (ta gọi là 2 điểm xuyên tâm đối) 
do đa giác có n đỉnh nên có \(\frac{n}{2}\) cặp điểm xuyên tâm đối (hay có \(\frac{n}{2}\) đường chéo đi qua tâm O) 
với mỗi hai đường chéo qua tâm O ta được 1 hình chữ nhật   
vì có 12 hình chữ nhật và có \(\frac{n}{2}\) đường chéo nên : \(C_{\frac{n}{2}}^2=15\left(dk:n\ge4\right)\)\(\Leftrightarrow\frac{\left(\frac{n}{2}\right)!}{2!.\left(\frac{n}{2}-2\right)!}=15\) \(\Leftrightarrow\frac{\frac{n}{2}.\left(\frac{n}{2}-1\right).\left(\frac{n}{2}-2\right)!}{2.\left(\frac{n}{2}-2\right)!}=15\) \(\Leftrightarrow\frac{\frac{n}{2}.\left(\frac{n}{2}-1\right)}{2}=15\Leftrightarrow\frac{n}{2}.\left(\frac{n}{2}-1\right)=30\Leftrightarrow n^2-2n=120\Leftrightarrow\left[\begin{array}{nghiempt}n=12\\n=-10\left(loai\right)\end{array}\right.\)

Vậy \(n=12\) thỏa mãn

8 tháng 4 2017

D.20