K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

Bài 3:

Xét họ đường cong \(\left(C_m\right):y=f_m\left(x\right)=mx^4\) và các đường thẳng \(d_m:y=k_mx+n_m\),

với \(x\in\left(0;3\right)\)\(m=1,2,3\)

Điều kiện \(\left(C_m\right)\) tiếp xúc với \(d_m\)

\(\begin{cases}mx^4=k_mx+n_m\\4mx^3=k_m\end{cases}\)\(,m=1,2,3\)

Ta cần chọn x1,x2,x3 thỏa mãn

\(\begin{cases}k_1=4x_1^3;k_1=k_2=k_3=k\\k_2=8x_2^3\\k_3=12x_3^3\\x_1+x_2+x_3=3\end{cases}\)\(\Rightarrow\begin{cases}x^3_1=2x^3_2=3x^3_3\\x_1+x_2+x_3=3\end{cases}\)

\(\Rightarrow\begin{cases}x_1=\frac{3\sqrt[3]{6}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}}\\x_2=\frac{x_1}{\sqrt[3]{2}}\\x_3=\frac{x_1}{\sqrt[3]{3}}\end{cases}\).Suy ra \(k=4x_1^3=\frac{648}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

\(n_1+n_2+n_3=-3x_1^4\left(1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}\right)=-\frac{1458}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

Mặt khác: \(f_m^n\left(x\right)=12mx^2>0,\forall x\in\left(0;3\right)\),suy ra \(f_m\left(x\right)\) là hàm lồi trên khoảng \(\left(0;3\right)\).

Do đó, trên khoảng (0;3) đường cong \(\left(C_m\right)\) không nằm phía dưới tiếp tuyến \(\left(d_m\right)\),tức là \(f_m\left(x\right)\ge g_m\left(x\right),\forall x\in\left(0;3\right)\) (*)

Từ hệ thức (*),ta có:

\(a^4\ge ka+n_1\)

\(2b^4\ge kb+n_2\)

\(3c^4\ge kc+n_3\)

Cộng theo vế ta có:

\(P\ge k\left(a+b+c\right)+n_1+n_2+n_3\)

\(=3k+n_1+n_2+n_3\)

\(=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

Vậy GTNN của \(P=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\) khi \(a=x_1;b=x_2;c=x_3\)

 

7 tháng 11 2016

2/ Áp dụng BĐT BCS : \(25=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)

\(\le\sqrt{2\left(x^2+y^2\right)}.\left(x^3+y^3\right)\)

\(\Rightarrow x^3+y^3\ge\frac{25}{\sqrt{2.5}}=\frac{5\sqrt{10}}{2}\)

Đẳng thức xảy ra khi \(\begin{cases}\frac{\sqrt{x}}{\sqrt{x^3}}=\frac{\sqrt{y}}{\sqrt{y^3}}\\x=y\\x^2+y^2=5\end{cases}\) \(\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)

Vậy MinP = \(\frac{5\sqrt{10}}{2}\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)

 

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

NV
21 tháng 10 2019

\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)

\(\Leftrightarrow x+y+2=0\)

(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)

\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)

\(\Rightarrow x+y=-2\)

\(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)

Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)

Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)

NV
21 tháng 10 2019

2/ \(x;y;z\ne0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)

3/ \(\Leftrightarrow mx-2x+my-y-1=0\)

\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

20 tháng 5 2017

2) Do \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\\\)\(\Rightarrow\dfrac{1}{a+1}=2-\left(\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

=\(\dfrac{b}{b+1}+\dfrac{c}{c+1}\)

Áp dụng BĐT AM-GM ta có

\(\dfrac{1}{a+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\) \(\ge\)\(2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự ta được

\(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ca}{\left(c+1\right)\left(a+1\right)}}\)

\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế theo vế của 3 BĐT cùng chiều ta được

\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\dfrac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra\(\Leftrightarrow a=b=c=\dfrac{1}{2}\)

NV
14 tháng 12 2018

Câu 1:

\(P=\dfrac{x}{4}+\dfrac{3x}{4}+\dfrac{2y}{4}+\dfrac{2y}{4}+\dfrac{3z}{4}+\dfrac{z}{4}+\dfrac{3}{x}+\dfrac{9}{2y}+\dfrac{4}{z}\)

\(P=\dfrac{1}{4}\left(x+2y+3z\right)+\left(\dfrac{3x}{4}+\dfrac{3}{x}\right)+\left(\dfrac{2y}{4}+\dfrac{9}{2y}\right)+\left(\dfrac{z}{4}+\dfrac{4}{z}\right)\)

\(\Rightarrow P\ge\dfrac{20}{4}+2\sqrt{\dfrac{3x}{4}.\dfrac{3}{x}}+2\sqrt{\dfrac{2y}{4}.\dfrac{9}{2y}}+2\sqrt{\dfrac{z}{4}.\dfrac{4}{z}}=5+3+3+2=13\)

\(\Rightarrow P_{min}=13\) khi \(\left\{{}\begin{matrix}x+2y+3z=20\\\dfrac{3x}{4}=\dfrac{3}{x}\\\dfrac{2y}{4}=\dfrac{9}{2y}\\\dfrac{z}{4}=\dfrac{4}{z}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)

Câu 2:

Ta có

\(ab+4\ge2\sqrt{4ab}=4\sqrt{ab}\Rightarrow2b\ge4\sqrt{ab}\Rightarrow\sqrt{\dfrac{b}{a}}\ge2\Rightarrow\dfrac{b}{a}\ge4\)

\(P=\dfrac{ab}{a^2+2b^2}=\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{a}}=\dfrac{1}{\dfrac{a}{b}+\dfrac{b}{16a}+\dfrac{31b}{16a}}\)

\(\Rightarrow P\le\dfrac{1}{2\sqrt{\dfrac{a}{b}.\dfrac{b}{16a}}+\dfrac{31}{16}.\dfrac{b}{a}}\le\dfrac{1}{2.\dfrac{1}{4}+\dfrac{31}{16}.4}=\dfrac{4}{33}\)

\(\Rightarrow P_{max}=\dfrac{4}{33}\) khi \(\left\{{}\begin{matrix}b=4a\\ab+4=2b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\end{matrix}\right.\)

Cho mình hỏi câu 1 vì sao bạn lại phân tích được \(2\sqrt{...}\), ....

30 tháng 10 2020

các bạn giúp mn vs