K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

Ta chứng minh BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\), dấu "=" xảy ra khi \(a=b=c\), Áp dụng BĐT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\);\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân 2 vế của BĐT ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\).Dấu "=" xảy ra khi \(a=b=c\)

Áp dụng vào bài toán ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\) (a,b,c có tổng bằng 1)

Dấu "=" xảy ra khi \(\begin{cases}a+b+c=1\\a=b=c\end{cases}\)\(\Rightarrow a=b=c=\frac{1}{3}\)

 

 

25 tháng 11 2016

a+b+c=0

\(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\)

thay vào A ta có:

A=a(a+b)(a+c)

= a.(-c).(-b)=abc(1)

B= c(a+c)(b+c)

=c.(-b)(-a)=abc(2)

từ (1)(2)=> abc=abc=> A=B(đfcm)

8 tháng 9 2016

\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)

\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)

\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)

\(=\frac{x}{x-1}\)

8 tháng 9 2016

e cảm ơn cj nhug bài này thầy chữa tối wa òi hehe

alculate: Câu 2:If you walk 45 minutes at a rate 4km/h and then run for 30 minutes at a rate of 10km/h, how many kilometers will you have gone at the end of one hour and 15 minutes?Answer: km. Câu 3:What is the maximum possible area, in , of a rectangle with a perimeter of 20cm?Answer: . Câu 4:Fill the missing number in the blank: Câu 5:In a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side...
Đọc tiếp
alculate:
?$1:[(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})\ldots(1-\frac{1}{10})(1-\frac{1}{11})]=$
 
Câu 2:
If you walk 45 minutes at a rate 4km/h and then run for 30 minutes at a rate of 10km/h, how many kilometers will you have gone at the end of one hour and 15 minutes?
Answer: km.
 
Câu 3:
What is the maximum possible area, in ?$cm^2$, of a rectangle with a perimeter of 20cm?
Answer: ?$cm^2$.
 
Câu 4:
Fill the missing number in the blank:
?$6x^2+$?$x+10=(2x+1)(3x+10)$
 
Câu 5:
In a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is
 
Câu 6:
Find the highest common factor of 147x and 98y if HCF(x;y)=1.
Answer:
 
Câu 7:
Let ?$x^2-21x-100=(x+a)(x+b)$. Find the value of ?$|a-b|$.
Answer: ?$|a-b|=$
 
Câu 8:
In triangle ABC, the measure of angle B is ?$5^o$ less than 1.5 times the measure of angle A and the measure of angle C is ?$5^o$ less than 2.5 times the measure of angle A. What is the measure of angle A in degrees?
Answer: The measure of angle A is ?$^o$.
 
Câu 9:
Write the next number in the sequence: 8; 24; 72;
 
Câu 10:
Complete: ?$x^2-238x+$?$=(x-b)^2$
 
 
 
Giúp mik với, có lời giải chi tiết nha. Thanks cả nhà =))))
2
13 tháng 12 2016

nếu thực sự bn cần mk sẽ giúp, còn để ra oai thì bye

cau1: dùng máy tính cho khỏi hại não

cau2: s = 4.3/4 + 10.1/2 = 8km

13 tháng 12 2016

ý bạn là sao, mik đưa câu hỏi vì không biết làm chứ đâu vì mik oai hay j ko.. bn có thấy đứa nào đã đi hỏi mà còn tự trả lời ko... thế mới gọi là oai đấy

 

21 tháng 9 2016

quá đơn giản

ở trên  a(a-b)+b(b-c)+c(c-a)+0 suy ra a=b=c

thay vào k=a^3x3-3a^3=3a^2 -3a+5=3a^2+-3a+5

min của k là min của 3a^2-3a+5 là bằng 17/4

27 tháng 4 2017

B A C 6 8 H D I

a) Vì \(\Delta ABC\) vuông tại A:

\(\Rightarrow BC^2=AB^2+AC^2\) (Định lí Pi-ta-go)

\(\Rightarrow BC^2=6^2+8^2\)

\(BC^2=100\)

\(\Rightarrow BC=10\) cm

Vì BD là phân giác của \(\Delta ABC\):

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (Tính chất đường phân giác)

\(\Rightarrow\dfrac{AD}{AD+DC}=\dfrac{AB}{AB+BC}\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AB+BC}\)

T/s: \(\dfrac{AD}{8}=\dfrac{6}{16}\)

\(\Rightarrow AD=3\) cm

Có: \(AC=AD+DC\)

\(DC=AC-DA\)

\(DC=8-3=5\) cm

b) Xét \(\Delta ABD\)\(\Delta HBI\) có:

\(\Lambda ABD=\Lambda HBI\) (BD là phân giác)

\(\Lambda BAD=\Lambda BHI\) (cùng bằng \(90^0\) )

\(\Rightarrow\Delta ABD\) ~ \(\Delta HBI\) (g.g)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)

\(\Rightarrow\) AB.BI=BD.HB

c) Vì \(\Delta ABD\) ~ \(\Delta HBI\) (chứng minh trên)

\(\Rightarrow\Lambda IDA=\Lambda BIH\) (2 góc tương ứng)

\(\Lambda BIH=\Lambda AID\) (đối đỉnh)

\(\Rightarrow\Lambda IDA=\Lambda AID\) (cùng bằng \(\Lambda BIH\) )

\(\Rightarrow\Delta AID\) cân tại A.

27 tháng 4 2017

a) Áp dụng định lý pitago trong tam giác vuông ABC ta có:

BC^2= AB^2 + AC^2

=6^2+8^2

=100

BC=10

BD là tia phân giác của góc ABC => AD/DC=BA/BC

=>AC/DC=16/10 =>8/DC=16/10

=>DC=8.10/16=5

AD=AC-DC=8-5=3

b)ta co H=90=>B1+I =90 (1)

A=90=>B2+D=90 (2)

từ (1) và(2)=>B1=B2=45

Xet tam giac ABD va tam giac BIH co:

A=H =90

B1=B2 (CMT)

tam giác ABD đồng dạng tam giác HBI (g.g)

AB/HB=BI/BD=>AB.BI=BD.HB

22 tháng 3 2017

B A C M N I J

22 tháng 3 2017

a) ta có M là trung điểm AB nên MA=MB

\(\Rightarrow BI+IM=MJ+JA\)

mà BI=JA nên IM=MJ

\(\Rightarrow M\) là trung điểm IJ

ta lại có: N là trung điểm AC, M là trung điểm AB nên MN là đường trun bình tam giác BAC

\(\Rightarrow MN\)//AC mà \(AB\perp AC\Rightarrow MN\perp AB\Rightarrow MN\perp IJ\)

tam giác INJ có MN vừa là đường trung tuyến, vừa lf đường co nên là tam giác cân

b)ta có N là trung điểm AC, I là trung điểmBJ(AI=IJ) nên IN là đường trung bình tam giác BJC nên IN//JC