Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 8L \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
ta thấy \(\sqrt{x}+1>=1\)
=> \(\left(\sqrt{x}+1\right)^2>=1\)
=> GTNN =1 khi x=0
bài 6: |x-1|=x+1
TH1: x-1=x+1<=> 0x=2 vô nghiệm
TH2: x-1=-1-x
<=> 2x=0<=> x=0
vậy tập nghiệm S={0}
câu 5: \(\sqrt{x^2+3}=\sqrt{4x}\) diều kiện x>=0
pt<=> \(x^2+3=4x\)
<=> x=3 hoặc x=1
vậy tập nghiệm S={1;3}
câu 2: \(\sqrt{x-2}\left(2\sqrt{x-2}-3\right)=2x-13\)
điều kiện x>=2
đặt \(\sqrt{x-2}=a\)>=0
=> pt có dạng a(2a-3)=4a2-9
<=> 2a2+3a-9=0
<=> a=-3 (loại) hoặc a=3/2
thya vào rồi giải: x-2=9/4
=> a=17/4 (thỏa )
các câu khác tương tự
a, Thay m = 1 vào phương trình trên ta được
phương trình có dạng : \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)
b, Để phương trình có nghiệm kép \(\Delta=0\)
\(\Delta=9-4\left(m-1\right)=9-4m+4=0\Leftrightarrow13-4m=0\Leftrightarrow m=\frac{13}{4}\)
c, Để 2 nghiệm của pt là độ dài hcn khi 2 nghiệm đều dương
\(\hept{\begin{cases}\Delta=9-4\left(m+1\right)>0\\x_1+x_2=-\frac{b}{a}=3>0\\x_1x_2=\frac{c}{a}=m-1>0\end{cases}\Leftrightarrow1< m< \frac{13}{4}}\)
Diện tích hình chữ nhật là : \(x_1x_2=2\Leftrightarrow m-1=2\Leftrightarrow m=3\)( tmđk )
Câu 1:
\(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
Câu 2;
Để A là số nguyên thì \(\left(x+2\right)⋮x^2+4\)
\(\Leftrightarrow x^2-4⋮x^2+4\)
\(\Leftrightarrow x^2+4-8⋮x^2+4\)
\(\Leftrightarrow x^2+4\in\left\{4;8\right\}\)
hay \(x\in\left\{0;2;-2\right\}\)
\(pt\Leftrightarrow\sqrt{x^2+x-6}=\sqrt{x^2+2}\)
Ta thấy 2 vế luôn dương bình phương lên ta có:
\(\sqrt{\left(x^2+x-6\right)^2}=\sqrt{\left(x^2+2\right)^2}\)
\(\Rightarrow x^2+x-6=x^2+2\)
\(\Rightarrow x^2-x^2+x=6+2\)
\(\Rightarrow x=8\)
\(\sqrt{\frac{3x-1}{x+2}}=\sqrt{5}\)
<=> \(\begin{cases}\frac{3x-1}{x+2}\ge0\\3x-1=5x+10\end{cases}\)
=> x=-11/2
thay x=-11/2 vào \(\frac{3x-1}{x+2}\)>=0 thỏa
=> nghiệm bpt là x=-11/2
Làm câu 2:
\(\left\{\begin{matrix}mx+2y=5\\4x+6y=7\end{matrix}\right.\)
Từ (2) y=(7-4x)/6 thế vào (1)
\(mx+\frac{2\left(7-4x\right)}{6}=5\Leftrightarrow\left(3m-4\right)x+7=15\Leftrightarrow\left(3m-4\right)x=8\)
Với m=4/3 ta có 0.x=8=> vô nghiệm
Vậy để hệ có nghiệm duy nhất => m khác 4/3
Khi m khác 4/3 hệ có nghiệm duy nhất:
\(\left\{\begin{matrix}x=\frac{8}{3m-4}\\y=\frac{7m-20}{2\left(3m-4\right)}\end{matrix}\right.\)
Lời giải:
Dễ thấy \(\Delta>0\) nên theo định lý Viete phương trình luôn có hai nghiệm \(x_1,x_2\) thỏa mãn:
\(\left\{\begin{matrix} x_1+x_2=-p\\ x_1x_2=-228p\end{matrix}\right.\)
Từ đây suy ra hai nghiệm là hai nghiệm nguyên một âm một dương. Giả sử \(x_1 >0,x_2<0\), đặt \(x_1=a>0,-x_2=b>0\).
Ta có \(\left\{\begin{matrix} b-a=p\\ ab=228p\end{matrix}\right.\Rightarrow b(b-a)=bp\Leftrightarrow b^2=bp+228p\vdots p\rightarrow b\vdots p\)
\(\rightarrow bp+228p\vdots p^2\rightarrow b+228\vdots p\)
Mà \(b\vdots p\Rightarrow 228\vdots p\Rightarrow p\in \left\{2,3,19\right\}\)
Thử lại thu được $p=19$ thỏa mãn.