Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = 1 vào phương trình trên ta được
phương trình có dạng : \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)
b, Để phương trình có nghiệm kép \(\Delta=0\)
\(\Delta=9-4\left(m-1\right)=9-4m+4=0\Leftrightarrow13-4m=0\Leftrightarrow m=\frac{13}{4}\)
c, Để 2 nghiệm của pt là độ dài hcn khi 2 nghiệm đều dương
\(\hept{\begin{cases}\Delta=9-4\left(m+1\right)>0\\x_1+x_2=-\frac{b}{a}=3>0\\x_1x_2=\frac{c}{a}=m-1>0\end{cases}\Leftrightarrow1< m< \frac{13}{4}}\)
Diện tích hình chữ nhật là : \(x_1x_2=2\Leftrightarrow m-1=2\Leftrightarrow m=3\)( tmđk )
Trong tam giác vuông đường trung tuyến từ đỉnh góc vuông bằng 1/2 cạnh huyền
=> EF = 2DM = 5cm
Áp dụng pitago trong hai tam giác vuông DEF, DEN
DE^2 + DF^2 = EF^2 = 25 (1)
DE^2 + DN^2 = EN^2 = 4^2 =16
<=> DE^2 + (DF/2)^2 = 16 ( DN = DF/2) (2)
Lấy (1) trừ (2)
=> 3/4 xDF^2 = 9 => DF = 6/căn 3 (cm)
trong tam giác vuông thì đường trung tuyến kể từ góc vuông tối cạnh cạnh sẽ băng 1/2 cạnh huyền => EF=2DM=5
theo định lí pitago ta có :
\(FE^2=DE^2+DF^2=25\)
\(EN^2=DN^2+DE^2=16\)
=>\(DE^2+\frac{DF^2}{4}=16\) (do \(DN=\frac{DF}{2}\))
=> \(\frac{3}{4}DF^2=9\)=> DF=\(\frac{6}{\sqrt{3}}=3,46\)
b1 lấy 12612211 x 2
KQ là chữ số của M
tính B kq
B=1870/9
câu 8L \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
ta thấy \(\sqrt{x}+1>=1\)
=> \(\left(\sqrt{x}+1\right)^2>=1\)
=> GTNN =1 khi x=0
bài 6: |x-1|=x+1
TH1: x-1=x+1<=> 0x=2 vô nghiệm
TH2: x-1=-1-x
<=> 2x=0<=> x=0
vậy tập nghiệm S={0}
câu 5: \(\sqrt{x^2+3}=\sqrt{4x}\) diều kiện x>=0
pt<=> \(x^2+3=4x\)
<=> x=3 hoặc x=1
vậy tập nghiệm S={1;3}
câu 2: \(\sqrt{x-2}\left(2\sqrt{x-2}-3\right)=2x-13\)
điều kiện x>=2
đặt \(\sqrt{x-2}=a\)>=0
=> pt có dạng a(2a-3)=4a2-9
<=> 2a2+3a-9=0
<=> a=-3 (loại) hoặc a=3/2
thya vào rồi giải: x-2=9/4
=> a=17/4 (thỏa )
các câu khác tương tự
Ba điểm không thẳng hàng sẽ tạo thành một tam giác. Để đường tròn qua hết 3 điểm đó thì đường tròn đó sẽ là đường tròn ngoại tiếp của tam giác.
Vì 3 điểm chỉ tạo nên 1 tam giác cho nên tam giác cúng chỉ có 1 đường tròn ngoại tiếp duy nhất.
Kết luận: chỉ có 1.