K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

19 tháng 8 2016

Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)

19 tháng 8 2016

v subscript m a x end subscript equals omega S subscript 0 equals square root of g over l end root l alpha subscript 0 equals 0 comma 313 space m divided by s

open parentheses v over v subscript m a x end subscript close parentheses squared plus open parentheses alpha over alpha subscript 0 close parentheses squared equals 1 rightwards double arrow v equals 0 comma 271 space m divided by s=2 7,1  cm/s

19 tháng 7 2016

\(t=\dfrac{1}{3}s=\dfrac{T}{6}\)

Trong thời gian này, biểu diễn bằng véc tơ quay thì véc tơ đã quay được 1 góc là: \(\alpha=\dfrac{360}{6}=60^0\)

Quãng đường lớn nhất khi tốc độ trung bình trong thời gian này là lớn nhất, do vậy vật dao động quanh vị trí cân bằng với góc quay tương ứng là \(60^0\).

Biểu diễn trên véc tơ quay như sau:

5 -5 O M N 30 30

Quãng đường lớn nhất là đoạn MN

\(MN=2.5.\sin 30^0=5(cm)\)

28 tháng 7 2016

Chắc là C quá.
Theo mình thì VTCB chỉ có lực căng dây cực đại.Hợp lực cực đại khi chắc là ở biên.
Gia tốc của vật nặng là gia tốc hướng tâm vì nó chuyển động tròn đều nên không hướng về VTCB.

28 tháng 7 2016

Đáp án đúng là C

(Khi đó \(a_{tt}=0,F=ma_{ht}\))

23 tháng 8 2016

Khi vật qua VTCB \Rightarrow 
v_{Max} = \omega A = 1 (cm/s)
a_{Max} = \omega^2 A = 1,57 \approx \frac{\pi}{2} (cm/s^2)
\frac{a_{Max}}{v_{Max}} = \frac{\omega ^2 A}{\omega A} = \omega = \frac{\pi}{2} (rad/s)
\Rightarrow T = \frac{2 \pi}{\omega } = 4 (s)

23 tháng 8 2016
W = \frac{1}{2}m \omega ^2 A^2 = \frac{1}{2}m \omega ^2 x^2 + \frac{1}{2}mv^2
Khi qua VTCB x = 0 \Rightarrow W = \frac{1}{2}mv^2
Đáp án đúng: C
6 tháng 8 2016

Hướng dẫn bạn:

- Lực kéo về: \(F=k.x=0,03\sqrt 2\pi\) (không biết có đúng như giả thiết của bạn không)

\(\Rightarrow x =\dfrac{0,03\sqrt 2\pi}{k}=\dfrac{0,03\sqrt 2\pi}{m.\omega^2}=\dfrac{0,03\sqrt 2\pi}{0,01.\omega^2}=\dfrac{3\sqrt 2\pi}{\omega^2}\)

- Áp dụng: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow 0,05^2=(\dfrac{3\sqrt 2\pi}{\omega^2})^2+\dfrac{(0,4\pi)^2}{\omega^2}\)

Bạn giải pt trên tìm \(\omega \) và suy ra chu kì \(T\) nhé.