K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

a) Đầu tiên bạn tự đi chứng minh hai công thức sau, do quá dài nên bạn có thể lên mạng tham khảo cách chứng minh:

\(\sin2a=2\sin a.\cos a\)

\(cos2a=cos^2a-sin^2a\)

Áp dụng hai công thức trên ta có:

\(sin30^o=2sin15^ocos15^o\Leftrightarrow sin15^ocos15^o=\frac{1}{4}\Leftrightarrow cos15^o=\frac{1}{4sin15^o}\)

\(cos30^o=cos^215^o-sin^215^o\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}=cos^215^o-sin^215^o\)

\(\Leftrightarrow\left(\frac{1}{4sin^215^o}\right)^2-sin^215^o=\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow\frac{1}{16sin^415^o}-sin^215^o=\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow-32sin^415^o-16sin^215^o\sqrt{3}+2=0\)

\(\Leftrightarrow sin^215^o=\frac{2-\sqrt{3}}{4}\left(sin^215^o\ge0\right)\)

\(\Leftrightarrow sin15^o=\sqrt{\frac{2-\sqrt{3}}{4}}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{4\sqrt{2}}}=\frac{\sqrt{3}-1}{2\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}\left(đpcm\right)\)

17 tháng 6 2016

a. Có nhiều cách nhé. Với lớp 9 cô dùng cách này. Cô hướng dẫn nhé :)

A B C 15 0 D

Giả thiệt cho như hình vẽ. Gỉa sử AB = 1cm, khi đó do góc ADB = 30độ nên \(\frac{AB}{BD}=\frac{1}{2};\frac{AB}{AD}=\frac{\sqrt{3}}{3}\)

Vậy \(AC=AD+DC=AD+DB=2+\sqrt{3}\)

Vậy \(tan15=\frac{AB}{AC}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}\)

b. Dựa vào công thức : \(tan^215+1=\frac{1}{cos^215}\)

18 tháng 6 2016

ko hiểu

18 tháng 9 2020

\(\sqrt{6-3\sqrt{3}}-\sqrt{6+3\sqrt{3}}+\frac{4-\sqrt{12}}{2-\sqrt{3}}\)

\(=\sqrt{\frac{12-6\sqrt{3}}{2}}-\sqrt{\frac{12+6\sqrt{3}}{2}}+\frac{4-2\sqrt{3}}{2-\sqrt{3}}\)

\(=\sqrt{\frac{9-6\sqrt{3}+3}{2}}-\sqrt{\frac{9+6\sqrt{3}+3}{2}}+\frac{2\left(2-\sqrt{3}\right)}{2-\sqrt{3}}\)

\(=\frac{\sqrt{\left(3-\sqrt{3}\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(3+\sqrt{3}\right)^2}}{\sqrt{2}}+2\)

\(=\frac{3-\sqrt{3}-3-\sqrt{3}}{\sqrt{2}}+2\)

\(=\frac{-2\sqrt{3}}{\sqrt{2}}+2=-\sqrt{2}.\sqrt{3}+2=2-\sqrt{6}\)

\(a=\dfrac{4\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}}{2}\)

\(=2\sqrt{\sqrt{5}-\sqrt{5}+1}=2\)

\(P=\left(2^5-7\cdot2^2-3\right)^{81}+19=1+19=20\)

\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)

\(=\sqrt{\frac{3+2\sqrt{3}\sqrt{2}+2}{3-2\sqrt{3}\sqrt{2}+2}}+\sqrt{\frac{3-2\sqrt{3}\sqrt{2}+2}{3+2\sqrt{3}\sqrt{2}+2}}\)

\(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)^2}}+\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}+\sqrt{3}\right)^2}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)}\)\

\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=10\)

\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)

\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)

\(=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-3\)

\(=\sqrt{3}-1\)