Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: 4cm
Câu 2: 6cm
Câu 3: 90o
Câu 4: -108
Câu 5: 2
Câu 6: 14
Câu 7: 43
Câu 8: -1
Câu 9: -3
Câu 10: -26
Câu 1 :
\(\left(2x+3\right)^2\) = \(4x^2+12x+9\)
Vậy :
Ta có :
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+5=t\)
=> Đa thức trở thành
\(\left(t-1\right)\left(t+1\right)+1\)
\(=t^2-1+1\)
\(=t^2\)
Thay vào ta được
Đt=\(\left(x^2+5x+5\right)^2\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\) (1)
Đặt \(x^2+5x+5=t\) thì (1)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)
Ta có : 4x + y = 1 => y = 1 - 4x
=> 4x^2 + y^2 = 4x^2 + ( 1 - 4x )^2 = 20x^2 - 8x + 1 = 4 ( 5x^2 - 2x ) + 1 = 4/5 ( 25x^2 - 10x + 1 ) + 1/5 = 4/5 ( 5x-1 )^2 +1/5
Ta có : ( 5x-1)^2 >= 0
=> 4/5 ( 5x-1)^2 +1/5 >= 0 + 1/5 = 1/5
Vậy 4x^2 + y^2 >= 1/5. Dấu "=" xảy ra <=> x= 1/5
Áp dụng BĐT Bunhiacopxki ta có:
\(\left[\left(2x\right)^2+y^2\right].\left(2^2+1\right)\ge\left(4x+y\right)^2=1\)
\(\Leftrightarrow4x^2+y^2\ge\frac{1}{5}\)
Dấu " = " xảy ra <=> \(\frac{2x}{2}=y\Leftrightarrow x=y=0,2\)
câu 5 kq =0
câu 6: góc C=90 độ (tam giác vuông tại C)(Định lý Pytago)
câu 7: 0 giá trị
câu 8:x=1
câu 10: x=3;y=1
x+y=4
bye
nếu đúng tích cho mik nha
Mik cảm ơn trc
A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)
B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)
áp dụng BĐT AM-GM
\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)
cộng 2 vế của BĐT cho nhau
\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)
C)tương tự câu B) ta có
\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)
cộng từng vế của BĐT ta có đpcm
\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)
\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)
\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)