Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)
\(f\left(x\right)=-x^3+3x^2+x-3+2^3-x^2\)
\(\Leftrightarrow f\left(x\right)=-x^3+\left(3x^2-x^2\right)+x-3+2^3\)
\(\Leftrightarrow f\left(x\right)=-x^3+2x^2+x-3+8\)
\(\Leftrightarrow f\left(x\right)=-x^3+2x^2+x+5\)
\(g\left(x\right)=-3x^3-x^2+2x^3+5x-3-4x\)
\(\Leftrightarrow g\left(x\right)=\left(-3x^3+2x^3\right)-x^2+\left(5x-4x\right)-3\)
\(\Leftrightarrow g\left(x\right)=-x^3-x^2+x-3\)
\(b)\)
Theo đề ra: \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(f\left(x\right)=-x^3+2x^2+x+5\)
\(g\left(x\right)=-x^3-x^2+x-3\)
\(\Rightarrow h\left(x\right)=x^2+2x+2\)
a.
f(x) + g(x)
= x^2 + 5x + 5 + x^2 - 4x + 3
= 2x^2 + x + 8
b.
Thay x = 1 vào f(x), ta có:
1^2 + 5 . 1 + 5
= 1 + 5 + 5
= 11
Vậy x = 1 không là nghiệm của f(x)
Thay x = 1 vào g(x), ta có:
1^2 - 4 . 1 + 3
= 1 - 4 + 3
= 0
Vậy x = 1 là nghiệm của g(x)
c.
f(x) = g(x)
x^2 + 5x + 5 = x^2 - 4x + 3
x^2 + 5x - x^2 + 4x = 3 - 5
9x = - 2
x = - 2/9
Câu 2:
+) TH1: \(3x-6\ge0\Rightarrow3x\ge6\Rightarrow x\ge2\)
Khi đó \(3x-6=x+2\)
\(\Rightarrow3x-x=6+2\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
+) TH2: \(3x-6< 0\Rightarrow3x< 6\Rightarrow x< 2\)
Khi đó: \(-3x+6=x+2\)
\(\Rightarrow-3x-x=-6+2\)
\(\Rightarrow-4x=-4\)
\(\Rightarrow x=1\)
Vậy \(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\).
Câu 3:
x.x=64=>x=8 hoặc x=-8 mà x.x.x<0 =>x<0
Vậy x=-8
Câu 5:
ta có: nghiệm của đa thức f(x)=x^4 - 16 =0
=> x^4 = 16
=> x= 2 hoặc x= -2
Câu 6:
ta có: f(x1) + f(x2) = 2.x1 + 3 + 2.x2 +3
= 2.(x1 + x2) + 3+ 3
=2.5+6
=16
vậy f(x1) + f(x2)=16
Câu 7:
vì đa thức f(x) =a.x + b có nghiệm x = 1
=> a.1 + b = 0
=> a+b=0 (1)
vì f(0) =5 => a.0+b= 5
=> 0+b = 5
=> b = -5
từ (1) ta có: a+ (-5)=0
=>a=5
vậy a=5 và b=-5
Câu 1:
\(x^2=64\\ Mà:\left[{}\begin{matrix}8^2=64\\\left(-8\right)^2=64\end{matrix}\right.\\ Mặtkhác:x^3< 0\\ =>x< 0\\ =>\left[{}\begin{matrix}x=8\left(Loại\right)\\x=-8\left(TMĐK\right)\end{matrix}\right.\)
Vậy: x= -8
Câu 6:
\(f\left(x\right)=x^4-16\\ < =>f\left(x\right)=\left(x^2\right)^2-4^2\\ < =>f\left(x\right)=\left(x^2-4\right)\left(x^2+4\right)\\ < =>f\left(x\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\\ =>\left[{}\begin{matrix}x-2=0\\x+2=0\\x^2+4=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: f(x) có 2 nghiệm .
\(\left(1\right)\left\{{}\begin{matrix}x^2=64\\x^3< 0\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=\pm8\\x< 0\end{matrix}\right.\) =>x=8
\(\left(2\right):...2^{5x-4x}=2^x=2^5=>x=5\)