Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
Câu 2;
Để A là số nguyên thì \(\left(x+2\right)⋮x^2+4\)
\(\Leftrightarrow x^2-4⋮x^2+4\)
\(\Leftrightarrow x^2+4-8⋮x^2+4\)
\(\Leftrightarrow x^2+4\in\left\{4;8\right\}\)
hay \(x\in\left\{0;2;-2\right\}\)
đk: \(x\ge0\)
Ta có: \(\sqrt{x}+2\sqrt{x+3}=x+4\)
\(\Leftrightarrow\left(x+3\right)-2\sqrt{x+3}+1=\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=\sqrt{x}-1\)
\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=\sqrt{x}-1\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}-1=\sqrt{x}-1\\\sqrt{x-3}-1=1-\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=\sqrt{x}\left(ktm\right)\\\sqrt{x-3}+\sqrt{x}=2\end{cases}}\)
\(\Leftrightarrow x-3+x+2\sqrt{x\left(x-3\right)}=4\)
\(\Leftrightarrow2\sqrt{x^2-3x}=7-2x\)
\(\Leftrightarrow4\left(x^2-3x\right)=\left(7-2x\right)^2\)
\(\Leftrightarrow4x^2-12x=49-28x+4x^2\)
\(\Leftrightarrow16x=49\)
\(\Rightarrow x=\frac{49}{16}\)
\(\sqrt{-x^2+6x-9}\)
\(\sqrt{-\left(x^2-6x+9\right)}\)
\(\sqrt{-\left(x-3\right)^2}\)
\(\left(x-3\right)^2>=0\)
\(-\left(x-3\right)^2< =0\)
dể biểu thức đc xác định thì \(-\left(x-3\right)^2=0\)
dấu "=" xảy ra khi x=3
kết luận ...............
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)