Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 - 3|2x - 1|
có |2x - 1| ≥ 0 => -3|2x - 1| ≤ 0
=> 2 - 3|2x -1| ≤ 2
dấu = xảy ra <=> 2x - 1 = 0<=> x = 1/2
vậy max A = 2 khi x = 1/2
Trần Việt LinhNguyễn Quốc ViệtNguyễn Lê Hoàng ViệtĐỗ Hương Giang
Nguyễn Huy ThắngNguyễn Huy TúVõ Đông Anh TuấnLê Nguyên Hạo
a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))
=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)
Từ : x-y-z = 0
=>x – z = y; y – x = – z và y + z = x
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{y-x}{3-2}=\frac{14}{1}=14\)
=> \(\begin{cases}x=28\\y=42\end{cases}\)
b) Từ 2x = 7y => \(\frac{2x}{14}=\frac{7y}{14}\Rightarrow\frac{x}{7}=\frac{y}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{2}=\frac{x+y}{7+2}=\frac{36}{9}=4\)
=> \(\begin{cases}x=28\\y=8\end{cases}\)
c) Từ \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{y-x}{3-7}=\frac{20}{-4}=-5\)
=> \(\begin{cases}x=-35\\y=-15\end{cases}\)
d) Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\begin{cases}x=2k\\y=3k\end{cases}\)
Vì xy = 24 => 2k.3k = 24 => 6k2 = 24 => k2 = 4 => k = \(\pm\) 2
Với k = 2 => \(\begin{cases}x=4\\y=6\end{cases}\)
Với k = -2 => \(\begin{cases}x=-4\\y=-6\end{cases}\)
Cho \(\frac{\overline{ab}}{a+b}\)=\(\frac{\overline{bc}}{b+c}\) .C/m \(\frac{a}{b}\)=\(\frac{b}{c}\)
Ta có:
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
=> \(\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)
=> \(\frac{a+b}{a+b}+\frac{9a}{a+b}=\frac{b+c}{b+c}+\frac{9b}{b+c}\)
=> \(1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)
=> \(\frac{9a}{a+b}=\frac{9b}{b+c}\)
=> 9a.(b + c) = 9b.(a + b)
=> a.(b + c) = b.(a + b)
=> ab + ac = ba + b2
=> ac = b2
=> \(\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)
a) Vì 52 = 25 nên √25 = 5
b) Vì 72= 49 nên √49 = 7
c) Vì 12 = 1 nên √1 = 1
d) Vì (23)2=49(23)2=49 = nên √49=23
a) Vì 52=25 nên \(\sqrt{25}=5\).
b) Vì 72=49 nên \(\sqrt{49}=7\).
c) Vì 1n=1 nên \(\sqrt{1}=1\). (\(\forall n\in N\))
d) Vì \(\left(\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) nên \(\sqrt{\dfrac{4}{9}}=\dfrac{\sqrt{4}}{\sqrt{9}}=\dfrac{2}{3}\).
1 a,Ta có ∆ ABC= ∆ HIK, nên cạnh tương ứng với BC là cạnh IK
góc tương ứng với góc H là góc A.
ta có : ∆ ABC= ∆ HIK
Suy ra: AB=HI, AC=HK, BC=IK.
=, =,=.
b,
∆ ABC= ∆HIK
Suy ra: AB=HI=2cm, BC=IK=6cm, ==400
2.
Ta có ∆ABC= ∆ DEF
Suy ra: AB=DE=4cm, BC=EF=6cm, DF=AC=5cm.
Chu vi của tam giác ABC bằng: AB+BC+AC= 4+5+6=15 (cm)
Chu vi của tam giác DEF bằng: DE+EF+DF= 4+5+6=15 (cm