K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

a/

I là giao điểm của hai đường phân giác

=>IB=IC( tính chất giao điểm của 3 đg phân giác tronh tam giác)

=>tam giác BIC cân tại I

=> g IBC=g ICB

=> g IBD= g ICE

tg IBD và tg ICE, có:

g IDB=g IEC (=90 độ)

g IBD= g ICE

BI=IC

=> tg IBD=tg ICE(ch-gn)

=> ID=IE

mà ADIE là hình vuông(g D= g A=g E=90 độ)

=> ADIE là hình vuông

b/

câu này mk thấy lạ, ADIE la hình vuông thì AD=AE, AB=AC

8 tháng 5 2021

I là giao điểm của hai đường phân giác

=>IB=IC( tính chất giao điểm của 3 đg phân giác tronh tam giác)

=>tam giác BIC cân tại I

=> g IBC=g ICB

=> g IBD= g ICE

tg IBD và tg ICE, có:

g IDB=g IEC (=90 độ)

g IBD= g ICE

BI=IC

=> tg IBD=tg ICE(ch-gn)

=> ID=IE

từ a nối đến i

  Xét tg vuông AID và tg vuông AIE có

              ID=IE

              AI cạnh chung

=> tg AID =tg AIE (ch-cgv)

=> AD =AE (2 cạnh tương ứng)

  


 

a: Xet ΔBCD có

M,N lần lượtlà trung điểm của BC,CD

nên MN là đường trung bình

=>MN//BD và MN=BD/2

Xét ΔEBD có EP/ED=EQ/EB

nên PQ//BD và PQ/BD=EP/ED=1/2

=>MN//PQ và MN=PQ

Xét ΔDEC có DP/DE=DN/DC

nên PN//EC và PN=1/2EC

=>PN=1/2BD=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

PN=PQ

=>MNPQ là hình thoi

b: NP//AC

=>góc QPN=góc BAC

=>góc NMP=góc EAF

=>PM//AF

c: Xét ΔAIK có

AF vừa là đường cao, vừa là phân giác

nên ΔAIK cân tại A

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

28 tháng 3 2021

😘

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)