Cho hàm số ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho hàm số y=f(x)y=f(x) xác định với mọi giá trị của xx thuộc \mathbb{R}R.

Nếu giá trị của biến xx tăng lên mà giá trị tương ứng của f(x)f(x) cũng tăng lên thì hàm y=f(x)y=f(x) được gọi là hàm số  trên \mathbb{R}R.

Nếu giá trị của biến xx tăng lên mà giá trị tương ứng của f(x)f(x) lại giảm đi thì hàm y=f(x)y=f(x) được gọi là hàm số  trên \mathbb{R}R.

đồng biếnnghịch biến

(Kéo thả hoặc click vào để điền)

 
olm.pngCâu hỏi 2 (0.25 điểm)

Hàm số y=-3x+9y=3x+9 là hàm đồng biến hay nghịch biến?

Đồng biến.
Nghịch biến.
olm.pngCâu hỏi 3 (0.5 điểm)

Trong các hàm số sau đây, những hàm nào là hàm số bậc nhất?

y=5x + 5y=5x+5
y=6y=6
y = 10xy=10x
x=5x=5
 
olm.pngCâu hỏi 4 (0.5 điểm)

Hàm số bậc nhất y=ax+by=ax+b (a\neq0)(a=0) xác định với mọi giá trị của xx thuộc \mathbb{R}R và có tính chất:

- Đồng biến trên \mathbb{R}R, khi .

- Nghịch biến trên \mathbb{R}R, khi .

a > 0a>0 a< 0a<0

(Kéo thả hoặc click vào để điền)

olm.pngCâu hỏi 5 (1 điểm)

Cho hàm số bậc nhất: y=ax+6y=ax+6. Tìm hệ số aa, biết rằng khi x = 7x=7 thì y = 8y=8

Trả lời: a=a= 

 
.

 

 
olm.pngCâu hỏi 6 (1 điểm)

Cho ba đường thẳng:

y=\dfrac{2}{5}x+\dfrac{1}{2}y=52x+21 \left(d_1\right)(d1);                     y=\dfrac{3}{5}x-\dfrac{5}{2}y=53x25  \left(d_2\right)(d2);                      y=kx+\dfrac{7}{2}y=kx+27  \left(d_3\right)(d3).

Tìm giá trị của kk sao cho ba đường thẳng đồng quy tại một điểm.

Trả lời: k=k=

 
.

 

olm.pngCâu hỏi 7 (1 điểm)

α>>OAy = ax+bxyβT

Góc tạo bởi đường thẳng y = ax + b và trục hoành là góc nào?

α
β
β hoặc α
 
olm.pngCâu hỏi 8 (1 điểm)

-1123456123456-1xyOAB

Góc tạo bởi đường thẳng d: y = -x +4d:y=x+4 với trục Ox bằng:

30o.
135o.
45o.
60o.
olm.pngCâu hỏi 9 (1 điểm)

Điểm đối xứng với điểm M(-7 ; -2) qua trục Oy là điểm A'( ; ) 

 

 
olm.pngCâu hỏi 10 (0.5 điểm)

Khoảng cách giữa hai điểm A_1\left(x_1,y_1\right)A1(x1,y1) và A_2\left(x_2,y_2\right)A2(x2,y2) là:

A_1A_2=\sqrt{\left(x_1+x_2\right)^2}+\sqrt{\left(y_1+y_2\right)^2}A1A2=(x1+x2)2+(y1+y2)2
A_1A_2=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}A1A2=(x1x2)2+(y1y2)2
A_1A_2=\sqrt{\left(x_1+x_2\right)^2+\left(y_1+y_2\right)^2}A1A2=(x1+x2)2+(y1+y2)2
A_1A_2=\sqrt{\left(x_1-x_2\right)^2}+\sqrt{\left(y_1-y_2\right)^2}A1A2=(x1x2)2+(y1y2)2
olm.pngCâu hỏi 11 (1 điểm)
 Cách chứng minh nhiều điểm cùng nằm trên một đường tròn

Cho \Delta\text{ABC}ΔABC và M là trung điểm BC. Hạ MD, ME theo thứ tự vuông góc với AB và AC. Trên tia BD và CE lần lượt lấy các điểm I, K sao cho D là trung điểm của BI, E là trung điểm CK. Chứng minh rằng bốn điểm B, I, K, C cùng nằm trên một đường tròn.

Bài giải:

+) M thuộc trung trực BI nên  = MB = \dfrac{1}{2}21BC  ⇔  vuông tại I ⇔ I thuộc đường tròn đường kính . (1)

+) ME thuộc trung trực của CK nên   = MC = \dfrac{1}{2}21BC ⇔  vuông tại K ⇔ K thuộc đường tròn đường kính BC. (2)

Từ (1), (2) suy ra bốn điểm B, I, K, C cùng nằm trên đường đường kính BC.

ABCDIKEM
 \Delta\text{BCI}ΔBCI MIBC \Delta\text{BCK}ΔBCK  MK 

(Kéo thả hoặc click vào để điền)

 
olm.pngCâu hỏi 12 (1 điểm)

Cho tam giác ABC vuông tại A, điểm D thuộc AB, điểm E thuộc AC. Gọi M, N, P, Q theo thứ tự là trung điểm của DE, DC, BC, BE. 

Chọn các khẳng định đúng.

MNPQ là hình chữ nhật.
M, N, P, Q cùng thuộc một đường tròn.
M, N, P, Q không cùng thuộc một đường tròn.
MNPQ là hình vuông.
olm.pngCâu hỏi 13 (1 điểm)

Tứ giác ABCD không là hình chữ nhật có góc B và góc D vuông.

A, B, C, D cùng thuộc đường tròn đường kính ACBD.

AC <=> BD. help cần gấp

0
22 tháng 11 2021

???????????????????????///

DD
3 tháng 7 2021

Trong các hàm số trên, các hàm số bậc nhất là: 

\(y=25\left(x+5\right),y=\frac{10x+7}{9}\).

23 tháng 11 2021

Để hs trên bậc nhất khi \(a\ne0\)

Thay x = 3 ; y = 4 vào đths trên ta được : \(4=3a+8\Leftrightarrow a=-\frac{4}{3}\)( tm ) 

18 tháng 11 2021

Ta có: mx-y=6 <=> (d):y=mx-6

3x+my=3 <=> (d'): y= \(\frac{3-3x}{m}\)(m \(\ne\)0)

Xét pt hoành độ giao điểm của (d) và (d'), ta được:

mx-6=\(\frac{3-3x}{m}\)

\(\Leftrightarrow\)\(m^2x-6m=3-3x\)

\(\Leftrightarrow x=\frac{6m+3}{m^2+3}\)

Do đó, y=\(mx-6=\frac{6m+3}{m^2+3}\times m-6=\frac{3m-18}{m^2+3}\)

Khi đó, M\(\left(\frac{6m+3}{m^2+3}+\frac{3m-18}{m^2+3}\right)\)là giao điểm của (d) và (d')

Để M thuộc góc phần tư thứ IV thì

\(\hept{\begin{cases}\frac{6m+3}{m^2+3}>0\\\frac{3m-18}{m^2+3}< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6m+3>0\\3m-18< 0\end{cases}}\)(Vì \(m^2\)+3>0, với mọi m)\(\Leftrightarrow\hept{\begin{cases}m>\frac{-1}{2}\\m< 6\end{cases}\Leftrightarrow\frac{-1}{2}< m< 6}\)

Vậy.......

DD
9 tháng 10 2021

Để đồ thị hàm số \(y=\left(2m+2\right)x-5m\)song song với đường thẳng \(y=4x+1\)thì: 

\(\hept{\begin{cases}2m+2=4\\-5m\ne1\end{cases}}\Leftrightarrow m=1\).